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Appendix B. 
Parameter estimation algorithm 

The parameter estimation process was achieved through history matching, using observations 
of both steady-state and transient conditions, as described in the Data Sources section, and 
using the Gauss-Levenberg-Marquardt algorithm implemented in the PEST software suite 
(Doherty, 2014) and SVD-assist (Tonkin and Doherty, 2005). In this section we briefly summarize 
the technique which is described in greater detail in Doherty (2014), Doherty and Hunt (2010), 
and references therein.  

The Gauss-Levenberg-Marquardt method is a gradient-based search algorithm that adjusts 
parameters in pursuit of the minimum value of an objective function. The objective function is 
the weighted sum of squared errors comparing field observations with forecasts at the same 
time and place made by the model. The objective function is referred to as  

𝚽 = #𝐲 − 𝑔(𝐩)*
+
𝐐-𝟏#𝐲 − 𝑔(𝐩)* 

where: 

Φ is the objective function; 

y is a vector of observations; 

g(p) is a vector of modeled values collocated in time and space with the observations, 
evaluated at parameter values p; 

Q is a matrix of observation weights (in this work, Q is a diagonal matrix indicating no 
correlation among observation errors is assumed). The units of Q are 1/(units of y);  

(∙)+ indicates a vector transpose; and 

 (∙)-0 indicates a matrix inversion. 

The term #𝐲 − 𝑔(𝐩)* is the vector of residuals—also called errors—comparing measured and 
modeled results. The observation weights play important roles both in enforcing an appropriate 
level of fit (correspondence between observed and modeled results) and in balancing Φ such 
that observations of various types all contribute to the objective function. The Data Sources 
section describes the assignment and adjustment of weights in more detail. The use of variable 
observation weights acknowledges that a perfect match between modeled and observed values 
is unattainable and, in fact, undesirable. The many reasons for this include error in the 
observations, the necessary fact that the model is a simplification of the true physical system, 
and the smoothing of time signals by the model. The flexibility that this imparts, however, 
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means that many (in fact, infinite) arrangements of parameters can result in the same value of 
Φ. This non-uniqueness motivates the need to incorporate expert (“soft”) knowledge to arrive 
at a set of parameters that satisfies both the desired level of fit and conforms to expert 
understanding of reasonable values for the parameters. 

The introduction of qualitative expert prior information is made through several avenues 
including 1) enforcing the level of fit desired through the assignment of weights, 2) normalizing 
observation group weight contributions through weight adjustment as discussed in the 
Parameter Estimation section, 3) inclusion of a penalty to the objective function for parameters 
deviating from a preferred condition through regularization, and 4) the singular value 
decomposition algorithm. Decisions made regarding all these aspects of prior information are 
inherently subjective. However, it is an important way for human understanding of the 
groundwater flow system to play a role in the process beyond blind trust of the algorithm, 
leading to more meaningful results (e.g. Fienen, 2013). 

The penalty to the objective function is assigned as a form of Tikhonov regularization (Tikhonov 
1963a, b) through an additional term in the objective function that penalizes deviation from a 
preferred condition—in this case, preferred homogeneity of spatially distributed parameters.  

𝚽 = #𝐲 − 𝑔(𝐩)*
+
𝐐-𝟏#𝐲 − 𝑔(𝐩)* + 𝜷𝐩+𝐙𝐩 

where: 

𝜷 is a weight-balancing regularization with fit as a function of 𝚽𝑴𝑳𝑰𝑴; 

𝚽𝑴𝑳𝑰𝑴 controls the strength of regularization (Doherty 2003; Fienen and others, 2009); and 

Z is a matrix of Kriging weights relating parameters to one another based on an exponential 
variogram and the distances between them. The Kriging weights are set at the beginning of 
the process and remain constant. However, the strength with which the regularization is 
enforced changes throughout the iterations of PEST. 

The variable 𝚽𝑴𝑳𝑰𝑴 was set to a value the same order of magnitude as the number of 
observations, as suggested by Fienen and others (2009) to balance the level of fit with the 
importance of the prior information.  

Singular value decomposition (SVD) was also used to enhance solution stability and provide a 
secondary level of regularization. In SVD, the sensitivity of observations to parameters is 
transformed to align with principal orientations of maximum information. This transformed 
space can then be divided into the calibration space and the null space. The calibration space is 
the region in which information from observations is meaningfully projected onto parameters 
while the null space represents a space where variability in parameters has little or no impact 
on model outputs of interest. This division between solution and null space is controlled by the 
stability of the sensitivity matrix and the settings recommended by Doherty and Hunt (2010) 
was adopted.  
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Null-Space Monte Carlo details 

When using null-space Monte Carlo, a parameter called the “singular value cutoff” defines how 
much parameters are allowed to vary as they are sampled. As discussed above, a stability 
criterion was used to control the singular value decomposition cutoff during history matching. 
As a result, the singular value cutoff of 40 was selected to be representative of the stability 
criterion derived cutoff in the history matching. The parameter distributions sampled are 
derived from the posterior Schur complement after history matching which further informs the 
parameter estimates based on the history matching performance (see White and others, 2016, 
for more details). This choice of distributions enforces correlation among the parameters 
making each sample consistent with the Bayesian posterior covariance. The implication of this 
is that parameters which are more informed in the history matching process are more tightly 
constrained in the sampling process than parameters which are less constrained by history 
matching. 

The corresponding prior covariance was set as bounds such that, for hydraulic conductivity, 
95% of the normally distributed samples should fall within plus or minus one order of 
magnitude. For recharge, a more restrictive prior parameter bound was assigned such that 95% 
of samples should fall within plus or minus 10% of the estimated recharge multiplier from 
history matching. These prior assumptions are subjective and based on expert knowledge. The 
posterior distributions incorporate formal information from the history matching process. 
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