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ABSTRACT 

The carbonate diagenetic history of the Lower Ordovician Prairie du Chien Group includes syndepositional 
diagenesis, shallow-burial diagenesis, hydrothermal diagenesis, and near-surface weathering. Syndeposi­
tional diagenesis included calcium carbonate and dolomite cementation, micritic fabric-retentive replacement 
dolomitization, and anhydrite precipitation. Shallow-burial diagenesis was associated with the development of 
at least two regional disconformities. Shallow-burial diagenesis included carbonate dissolution and karst 
development, patchy silicification, and possibly the early phases of coarse, fabric-destructive replace­
ment dolomitization and dolomite cementation. Hydrothermal diagenesis included pervasive dolomite cemen­
tation and fabric-destructive replacement dolomitization, minor dedolomitization and calcite cementation, 
and patchy Mississippi Valley-type sulfide mineralization. Near surface weathering has included karst devel­
opment and the precipitation of aragonitic and calcitic speleothems. 

δ

This study illustrates some of the difficulties of interpreting the mechanisms responsible for the dolomiti­
zation of ancient dolostone, many of which have complicated diagenetic histories that include multiple 
episodes of dolomitization. In the case of the Prairie du Chien Group, hydrothermal dolomitization has 
petrographically overprinted many of the earlier diagenetic events but has not markedly shifted bulk-rock 

18O and δ13C values from Early Ordovician marine carbonate values. Thus, the history of carbonate diagen­
esis and dolomitization in the Prairie du Chien Group is based primarily on detailed petrography and 
cathodoluminescence petrography, but is not strongly supported by trace element or stable isotope geochem­
istry. 

INTRODUCTION 

Lower-Middle Ordovician dolostone of the upper 
Mississippi Valley region has been studied intermit­
tently since the early 1900s (for example, Steidtmann, 
1911; Van Tuyl, 1914) as part of a continuing, broader 
effort to develop a general model for regional fabric-
destructive dolomitization. To date, regional dolomiti­
zation in the study area has been variously attributed 
to seawater or evaporative brines (Calvin and Bain, 
1900; Leonard, 1905; Asquith, 1967), meteoric water 
and/or hydrothermal fluids (Deininger, 1964), and 
mixed meteoric-marine water (Badiozamani, 1973). 
Other than Deininger (1964), studies of hydrothermal 
minerals in the Upper Mississippi Lead-Zinc District 
(for example, Bain, 1906; Agnew and others, 1956; 
Heyl and others, 1959) have generally ignored the 
problem of dolomitization outside of ore deposits. 

Our study examines the dolomitization and other 
carbonate diagenesis of the Lower Ordovician Prairie 
du Chien Group throughout the upper Mississippi Val-

ley-southern Wisconsin outcrop area (fig. 1). 
Throughout this area the Prairie du Chien Group ex­
hibits a complex diagenetic history, and multiple epi­
sodes of dolomite cementation and fabric-destructive 
replacement dolomitization are a major feature of this 
diagenetic history. In the Prairie du Chien Group, re­
gional hydrothermal dolomitization has overprinted 
many of the earlier diagenetic events (Smith, 1990; 
Smith and Simo, 1991), resulting in somewhat am­
biguous stable-isotope and trace-element signatures. 
Detailed petrography and cathodoluminescence 
petrography have been essential to placing Prairie du 
Chien Group dolomite fabrics in sequence. This study 
illustrates some of the difficulties of interpreting the 
mechanisms responsible for the dolomitization of an­
cient dolostone. 

SEDIMENTOLOGY AND STRATIGRAPHY 

The Lower Ordovician Prairie du Chien Group crops 
out from Minnesota to Michigan (fig. 1). The carbon­
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Figure 1. Map showing location of study 
area, Prairie du Chien outcrop area, 
Wisconsin arch, and Upper Mississippi 
Valley Lead-Zinc district. Alphabetical 
abbreviations identify locations of measured 
sections (all Wisconsin, unless otherwise 
noted): BR-Blue River; BRP-Bryant Rock 
Products, Shakopee, Minnesota; CV-Coon 
Valley; GB-Glovers Bluff (Plainfield); HC-
Hager City; LB-Lanesboro, Minnesota; 
MC-Millers Curve (Cross Plains); NL-New 
London; PDC-Prairie du Chien; PE-
Preston, Minnesota; SG-Spring Green; SH-
Shakopee, Minnesota; ZR-Zumbro River 
(Zumbrota, Minnesota); ZS-Zumbrota, 
Minnesota. Water wells are identified by 
Wisconsin Geological and Natural History 
Survey number: Bn-147 (Brown County), 
Mt-190 (Marinette County). 

ate-dominated, mixed carbonate-siliciclastic sediment 
of the Prairie du Chien Group correspond mainly to 
the “restricted platform” carbonate facies belts of Wil­
son (1974; for example, Adams, 1978; Austin, 1971; 
Davis, 1966, 1970, 1971; Ostrom, 1970; Raasch, 
1952; Shea, 1960; Smith, 1991; Smith and others, 
1993, 1996). Abundant oolites, mudcracks, and 
moldic nodular anhydrite, and a moderately diverse 
macrofauna (Smith and others, 1993, 1996) and con­
odont microfauna (Smith and Clark, in press) indicate 
deposition in a variety of shallow-subtidal to 
supratidal, marine to hypersaline settings. 

The Prairie du Chien Group consists of the On­
eota and Shakopee Formations (fig. 2), deposited dur­
ing two major relative highstands of sea level that 
flooded the central North American craton during the 
Early Ordovician (Smith and others, 1993, 1996). The 
Prairie du Chien Group and correlative units mark the 
end of regional siliciclastic deposition and the incep­
tion of widespread Ordovician carbonate deposition. 
The Prairie du Chien Group is underlain by the Upper 
Cambrian Jordan Formation and overlain by the 
Middle Ordovician St. Peter Formation (fig. 2). 

METHODS 

Field data and samples were obtained from 14 mea­
sured outcrop sections and 2 water-wells (fig. 1). Do­
lomite associated with Mississippi Valley-type ores 
from the Upper Mississippi Lead-Zinc District (fig. 1) 
was sampled from a collection at the University of 
Wisconsin-Madison. Approximately 350 thin sections 

were examined petrographically, including approxi­
mately 50 examined using cathodoluminescence. Do­
lomite phases with distinctive and correlatable cathod­
oluminescence colors were analyzed by electron mi­
croprobe in order to determine Ca:Mg ratios and 
weight-percentages of Fe, Mn, Sr, and Na. Electron 
beam width was 0.015 mm; beam voltage was 15 Kv; 
count times were 20-30 s. 

Forty-three dolomite samples were analyzed for 
oxygen and carbon stable-isotopic ratios at the Stable 
Isotope Laboratory of the University of Wisconsin-
Madison. Whole-rock samples (5-50 mg) were drilled 
and chipped from parts of thin section chips contain­
ing representative mixtures of dolomite types based 
on cathodoluminescence petrography of matching thin 
sections. Powdered samples were reacted for approxi­
mately 12 hours with phosphoric acid at 50oC in an 
evacuated reaction vessel. Carbon dioxide was drawn 
off, cryogenically purified, and analyzed in a 
Finnigan/MAT 251 mass spectrometer. 

SYNDEPOSITIONAL DIAGENESIS 

Overview 

Evidence of syndepositional diagenesis is partially 
overprinted by later diagenetic events. Evidence of 
syndepositional diagenesis includes moldic and silici­
fied nodular anhydrite, moldic halite, platy cm-thick 
intraclasts, intraclasts consisting of decimeter-thick 
grainstone slabs, grapestone clasts, ooids, stromato­
lites, and micritic envelopes and cement. Nodular an­
hydrite and minor halite precipitated within peloidal 
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packstone and wackestone deposited in supratidal set­
tings. Platy cm-thick intraclasts composed of peloidal 
packstone probably formed as supratidal crusts and 
were later reworked into both supratidal and shallow­
subtidal deposits. Syndepositional cement within 
supratidal crusts may have included halite, gypsum, 
anhydrite, calcite, aragonite, and dolomite. Decimeter-
thick slabs of oolitic grainstone are weakly imbricated 
within an oolitic grainstone matrix, and are interpreted 
as reworked beachrock. Ooids and stromatolites indi­
cate a range of shallow-subtidal to intertidal, marine 
to hypersaline settings. 

Internal fabrics of ooids are commonly well pre­
served (for example, figs. 3 and 4), suggesting that 
many non-skeletal grains were originally calcite 
instead of aragonite (for example, Sandberg, 1983). In 
contrast, the aragonitic skeletal fragments of molluscs 
are preserved as molds. Grapestone clasts and micritic 
envelopes and cement (fig. 3) probably formed in 
shallow-subtidal settings. 

Syndepositional dolomite and dolomitization 

Based on petrography on stained thin sections and 
petrography using cathodoluminescence, the earliest 
dolomite within the Prairie du Chien Group is finely-
crystalline (<0.02-0.1 mm) dolomite crystals with 
unzoned red-orange cathodoluminescence. These 
small dolomite crystals are ubiquitous, and are over­
grown and partially replaced by later dolomite phases. 
Syndepositional dolomite crystals are best preserved 
within mud-rich rocks, such as peloidal micrites, 
peloidal wackestone, and boundstone. Perhaps par-
tially-dolomitized micritic carbonates were protected 
from extensive later replacement dolomitization by 
their relatively low initial porosity and permeability. 

Tidal pumping and evaporation are known pro­
duce supratidal dolomitic crusts in some modern, 
tropical, supratidal settings (Carballo and others, 
1987; Mazzullo and others, 1987; Lasemi and others, 
1989). Syndepositional dolomite also precipitates in 
association with microbial, mat-forming communities 
on supratidal sabkhas (Patterson and Kinsman, 1977; 
McKenzie and others, 1980; Muller and others, 1990; 
Illing and Taylor, 1993). Abundant platy intraclasts 
are the best candidates for supratidal dolomitic crusts 
in the Prairie du Chien Group. In addition, muddy­
peloidal sabkha sediment containing laminae and 
moldic anhydrite and gypsum are also likely to have 
been partially dolomitized syndepositionally. 

Petrographic evidence suggests that reducing mi­
croenvironments within grains and micritic sediment 
may have facilitated syndepositional dolomitization of 
Prairie du Chien Group sediment. Syndepositional 

dolomite crystals are commonly similar in size to the 
peloids that contain them (fig. 5), like the “one-per-
peloid” pattern observed in Holocene sediment 
(Gunatilaka and others, 1984). In contrast, larger 
grains such as ooids typically contain remnants of 
multiple 0.02-0.1 mm-size syndepositional dolomite 
crystals overgrown by late-stage dolomite (fig. 6). In 
some cases, Prairie du Chien Group peloids are en­
tirely replaced by dolomicrite (fig. 6, righthand part of 
figure), much of which may be of 
syndepositional origin. 

Dolomite is likely to have also precipitated within 
subtidally-deposited Prairie du Chien Group sediment 
without the replacement of aragonite or calcite. Dolo-

Figure 2. Generalized stratigraphic column for Prairie 
du Chien Group and associated Upper Cambrian to 
Upper Ordovician strata. Arrows indicate the positions 
of major subaerial unconformities. 
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Figure 3. Dolomitized 
grapestone from lower Oneota 
Formation at Glovers Bluff 
(GB), Wisconsin. Grapestone 
and ooids indicate pervasive 
early cementation. Note dolo­
mitized micritic envelopes. 
Scale bar = 1 mm. 

Figure 4. Dolomitized ooid 
from lower Oneota Formation 
at Prairie du Chien, 
Wisconsin, showing preserved 
primary fabric. Lack of 
petrographic evidence for 
neomorphic recrystallization 
into coarse calcite suggests 
primary mineralogy was 
calcite instead of aragonite. 
Scale bar = 0.5 mm. 

mite precipitation in marine sediment appears to be in 
part thermodynamically driven by bacterially-medi-
ated organic carbon oxidation and sulfate reduction 
according to the general reaction: 

-2CH
2
O (organic) + SO

4
2- —> H S + 2HCO

2 3 

(Burns and others, 1988). 

Assuming a diffusion-limited seawater source of Mg2+ 

and SO 2-, marine dolomitization should occur prefer­
4 

entially at shallow burial depths beneath the sediment-
water interface (Baker and Burns, 1985; Compton and 
Siever, 1986; Burns and Baker, 1987). This model for 

syndepositional dolomitization is supported by evi­
dence from a variety of modern and ancient carbonate 
marine sediment (Behrens and Land, 1972; Bone and 
others, 1991, 1992; Gebelein and others, 1980; 
Gunatilaka and others, 1984; James and others, 1991; 
Sass and Katz, 1982; Bein and Land, 1983). Bone and 
others (1992) suggest that dolomite crystals of marine 
origin may nucleate later dolomite, although the ma­
rine origin of these nuclei could easily be obscured by 
recrystallization, replacement, and overgrowth. 
By inference, much of the finely-crystalline 
(<0.02-0.1 mm), red-orange luminescent dolomite 
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dispersed within subtidal Prairie du Chien Group sedi­
ment is interpreted as marine in origin. 

SHALLOW-BURIAL DIAGENESIS 

Overview 

Shallow-burial diagenesis included carbonate dissolu­
tion and karst development, patchy silicification, and 
possibly the early phases of coarse, fabric-destructive 
replacement dolomitization and dolomite cementa­
tion. Aside from possible dolomitization, these diage­
netic events occurred during prolonged subaerial ex­
posure associated with unconformity development 

(Smith 1989, 1992; Smith and others, 1993, 1996). 
The large-scale paleokarst features formed during 

the development of the Oneota-Shakopee and Shako-
pee-St. Peter unconformities have been mapped 
regionally (summarized in Smith and others, 1996). In 
contrast, the microscale carbonate fabrics associated 
with shallow burial and unconformity development 
are the least well-documented aspect of Prairie du 
Chien Group diagenesis, in part because later diage­
netic overprinting such as regional hydrothermal dolo­
mitization preferentially altered carbonate fabrics 
associated with high-permeability. 

Examples of calcium-carbonate cement fabrics 

Figure 5. Dolomitized 
peloidal packstone­
wackestone from basal Sha­
kopee Formation at Preston 
(PE), Minnesota. Dolomite 
crystal size and peloid size 
are similar. Scale bar = 
0.5 mm.

Figure 6. Dolomitized ooid 
within dolomitized peloidal 
packstone-wackestone 
matrix, from lower Oneota 
Formation at Madison, 
Wisconsin. Note relatively 
coarse dolomite crystals 
within ooid (left) and finer 
dolomite crystals within 
micritic-textured peloidal 
packstone-wackestone 
(right). Ooid core is a grain 
of quartz silt. Scale bar = 
0.2 mm.
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formed during shallow-burial diagenesis are exceed­
ingly rare within the Prairie du Chien Group. One 
example contains the ghosts of fibrous cement within 
later dolomite (fig. 7). The fibrous cement is inter­
preted as aragonitic fracture-filling cement precipi­
tated within centimeter-wide fractures during 
paleokarst development. Alternatively, the fibrous ce­
ment may have been fibrous high-magnesium calcite 
precipitated during marine transgression across a 
karsted land surface. 

Shallow-burial dolomite and dolomitization 

The Prairie du Chien Group contains a somewhat het­
erogeneous assortment of dolomite cement and re­
placement phases unified by the fact that they post­
date syndepositional diagenetic features and some 
paleokarst development, and precede the main events 
of regional hydrothermal mineralization. Shallow-
burial dolomite, as they are termed here, forms 
cement and fabric-destructive replacement fabrics 
composed of idiotopic, subhedral-to-euhedral crystals. 
Shallow-burial dolomite crystals (0.1-0.5 mm) are 
larger than the syndepositional dolomite crystals 
(<0.02-0.1 mm) upon which they nucleated. Under 
cathodoluminescence, shallow-burial dolomite typi­
cally exhibits a distinctive microzoning composed of 
red-orange and orange microzones, quite unlike the 
relatively uniform red-orange color of early dolomite, 
and unlike the blocky microzoning of later hydrother­
mal dolomite (fig. 8). The distinctively microzoned 
dolomite is best developed in vuggy pores of the On­
eota Formation. Smaller dolomite crystals without dis-

Figure 7. Dolomitized 
fibrous (formerly 
aragonite?) fracture-filling 
cement, from lower Oneota 
Formation at Spring Green 
(SG), Wisconsin. Scale bar 
= 0.5 mm. 

tinct microzones but with similar petrographic rela­
tionships and cathodoluminescence colors are present 
in the overlying Shakopee Formation. 

The earliest work on the regional dolomitization 
of Ordovician carbonates in the study area attributed 
dolomitization to seawater or evaporative brine (for 
example, Calvin and Bain, 1900; Leonard, 1905). This 
work was later corroborated by Asquith (1967) and 
Deininger (1964), both of whom also primarily exam­
ined Middle Ordovician dolostone of the Sinnipee 
Group. Alternative dolomitization mechanisms that 
have been proposed include mixing-zone dolomitiza­
tion (Badiozamani, 1973) and dolomitization by hy­
drothermal fluids (Deininger, 1964; Sheppard, 1982). 

Finely microzoned shallow-burial dolomite from 
the Prairie du Chien Group is similar in cathodolumi­
nescence pattern to detrital dolomite obtained from 
the continental shelf of South Australia by Bone and 
others (1991, 1992). Trace element composition and 
stable isotopic data suggest that the microzoned Aus­
tralian dolomite precipitated from seawater below the 
sediment-water interface (Bone and others, 1992). In 
contrast, geochemical analyses of Prairie du Chien 
Group dolomite are inconclusive regarding 
physiochemical conditions, and Prairie du Chien 
Group petrography suggests dolomitization of well-
lithified strata, not unconsolidated sediment. In addi­
tion, the extensive fabric-destructive replacement of 
precursor carbonate material by shallow-burial dolo­
mite in the Prairie du Chien Group suggest dolomiti­
zation by a fluid more corrosive than seawater. 

Alternatively, shallow-burial dolomite may have 

6 ◆  GEOSCIENCE WISCONSIN 



precipitated within a coastal mixing zone. Mixing 
zones would have been widespread across our study 
area during the marine transgressions that followed 
the regional development of formation-bounding dis­
conformities. The concept of mixing-zone dolomitiza­
tion (Hanshaw and others, 1971) was first applied to 
Ordovician carbonates of the study area by 
Badiozamani (1973), who used it to explain partial 
dolomitization of the Middle Ordovician Platteville 
Formation. The chemical underpinning of the mixing-
zone model have since been severely questioned (for 
example, Hardie, 1987). Recent work suggests that 
modern mixing zones are typically dominated by car­
bonate dissolution instead of pervasive dolomitization 
(for example, Back and others, 1986; Sanford and 
Konikow, 1989), although some dolomite has been 
shown to precipitate within the seawater-dominated 
parts of mixing zones (for example, Ward and Halley, 
1985). 

Regional, fabric-destructive dolomitization of 
well-lithified limestone by seawater and/or seawater-
derived fluids has also been hypothesized (for ex­
ample, Saller, 1984; Pleydell and others, 1990; 
Goldstein and others, 1991; James and others, 1991). 
In all of these cases the dolomitizing fluid appears to 
have been seawater or seawater-derived evaporative 
brines, although the actual conditions of dolomitiza­
tion are not well constrained in all cases. 

The Prairie du Chien Group would have been 
thoroughly flushed by seawater, brackish water, and 
fresh water during the sea level changes that accompa­
nied development of formation-bounding disconfor­
mities. Some mixing-zone dolomitization, and dolo­
mitization by seawater and evaporatively-derived 
brines probably accompanied marine regressions and 
transgressions. However it is also possible that the do­
lomite represents an initial phase (that is, warm, not 
hot) of hydrothermal dolomitization, and do not repre­
sent dolomitization by these other mechanisms. Once 
again, relevant geochemical evidence is lacking in the 
Prairie du Chien Group because of extensive replace­
ment by later dolomite phases. All that is certain is 
that shallow-burial dolomitization followed 
syndepositional diagenesis and lithification, and pre­
ceded further dolomitization by hydrothermal brines. 

HYDROTHERMAL DIAGENESIS 

Overview 

Non-economic occurrences of hydrothermal minerals 
indicate that regional hydrothermal mineralization af­
fected a 100,000 km2 area surrounding the Upper 
Mississippi Lead-Zinc District, including the study 

area (Jenkins, 1968; Heyl and West, 1982). Petro­
graphic and geochemical similarities between the ores 
and disseminated sulfides from outlying locations 
support the hypothesis of regional hydrothermal min­
eralization by the same fluids (Garvin and others, 
1987). 

Rubidium-strontium dating indicates that hydro­
thermal mineralization of the Upper Mississippi Dis­
trict occured during the Early Permian (269 +/- 4 Ma, 
Rowan and others, 1995). Maximum burial of the dis­
trict during hydrothermal mineralization is estimated 
at approximately 1 km, based on apatite fission-track 
analysis (Zimmerman, 1986). 

The following paragenetic sequence has been 
documented for Mississippi Valley-type ores of the 
Upper Mississippi Valley: dolomitization, cherty si­
licification, marcasite and pyrite precipitation, 
sphalerite and galena precipitation, and calcite pre­
cipitation (Tupas, 1950; Heyl and others, 1959). Al­
though the homogenization and final-melting tem­
peratures of fluid inclusions in sphalerite and late-
stage calcite have been studied, the earliest hydrother­
mal mineral phase (dolomite) lacks comparable docu­
mentation. 

Homogenization temperatures of two-phase fluid 
inclusions in sphalerite indicate ore precipitation at 
75-220oC in the main Upper Mississippi Valley min­
ing district (Newhouse, 1933; Bailey and Cameron, 
1951; McLimans, 1977), and precipitation of outlying 
ores at lower temperatures: 57-116oC (Jenkins, 1968; 
Coveney and Goebel, 1983; Coveney and others, 
1987; Kutz and Spry, 1989). Final melting tempera­
tures of two-phase fluid inclusions in sphalerite indi­
cate precipitation from brines containing 16-24 equiv 
wt percent NaCl (McLimans, 1977; Kutz and Spry, 
1989). 

Homogenization temperatures of 38-78oC from 
late-stage calcite indicate that temperatures decreased 
toward the end of hydrothermal mineralization (Bailey 
and Cameron, 1951; Erickson, 1965; Kutz and Spry, 
1989). Late-stage calcite precipitated from brine con­
taining 5-23 equiv wt percent NaCl (Hall and 
Friedman, 1963; Erickson, 1965; Kutz and Spry, 
1989), also suggesting local dilution of mineralizing 
brine by meteoric water (Hall and Friedman, 1963). 

Hydrothermal dolomite and dolomitization 

Hydrothermal dolomite is a relatively late diagenetic 
feature and is the youngest dolomite within the Prairie 
du Chien Group. Hydrothermal dolomite crystals are 
mainly subhedral to euhedral, idiotopic (mainly) to 
xenotopic, and up to 2 mm in size (figs. 8 and 9). In 
general, xenotopic dolomite crystal textures indicate 
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Figure 8. 
Cathodoluminescence 
photomicrograph of finely­
microzoned dolomite within 
lower Oneota Formation at 
Cazenovia (CZ), Wisconsin. 
Finely microzoned dolomite 
(B) overgrow poorly-defined 
earlier dolomite (A), which 
are overgrown by hydro­
thermal dolomite (C). Solid 
black color indicates open 
porosity. Scale bar = 0.2 mm. 

Figure 9. 
Cathodoluminescence 
photomicrograph of 
hydrothermal dolomite 1-5 
filling vuggy pore within 
lower Oneota Formation at 
Cazenovia, Wisconsin. 
Earlier dolomite (A), parts 
of which contain fine 
microzones (B), are 
overgrown and patchily 
replaced by hydrothermal 
dolomite 1-5. Note dolomite 
3 replacing earlier 
dolomite at C. Scale bar = 
0.2 mm.

crystallization at temperatures >50-60oC (Gregg, 
1982; Gregg and Sibley, 1983, 1984; Radke and 
Mathis, 1980), however, the dominance of the 
idiotopic dolomite crystal growth form in the Prairie 
du Chien Group suggests 50-60oC as the upper limit 
of fluid temperatures during Prairie du Chien Group 
dolomitization. These modest temperatures are consis­
tent with petrographic evidence that dolomitization 
was an early phase of hydrothermal mineralization. 

Hydrothermal dolomite replaces and overgrows 
part of all precursor carbonate material (figs. 8 and 9). 
This observed replacement of parts of lower-tempera-
ture dolomite by higher-temperature dolomite is gen­

erally expected because of the relative thermodynamic 
instability of calcium-rich, relatively disordered 
lower-temperature dolomite (for example, Land, 
1980, 1985). Hydrothermal dolomite is itself locally 
replaced and/or overgrown by hydrothermal calcite 
(fig. 10), the last phase of regional hydrothermal min­
eralization in the Upper Mississippi Valley (Tupas, 
1950). 

Hydrothermal dolomite from Prairie du Chien 
Group outcrops displays a consistent sequence of 
cathodoluminescence colors (fig. 9): dull orange 
(dolomite 1), microzoned red and black (dolomite 2), 
red (dolomite 3), dark red (dolomite 4), and black 
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(dolomite 5). Dolomite 1, 2 (where present), and 3 are 
generally separated by microdissolution surfaces. Do­
lomite 1 is the most abundant hydrothermal dolomite 
phase (for example, fig. 9). The trend toward darker 
(“quenched”) cathodoluminescence is accompanied 
by an increase in Fe/Mn ratios from 1.3 to 12.8 (table 
1). Dolomite 4 and 5 are particularly ferroan and aver­
age 5600 to 12,800 ppm Fe (table 1). 

Dolomite 1 (dull orange) and 3 (red) can be visu­
ally correlated between ore bodies and dolomitized 
parts of the Prairie du Chien Group and Sinnipee 
Groups. Dolomite from Upper Mississippi Valley 
lead-zinc ore typically consists of dolomite 1 and a 
thin, discontinuous rim of dolomite 3. Within ore de­
posits, dolomite 3 precipitated just prior to sulfide pre­
cipitation and is commonly overgrown by marcasite 
or sphalerite (Heyl and others, 1959). 

Dolomite 4 (dark red) and 5 (black) was only 
identified in Prairie du Chien Group samples from 
outside of ore deposits, although these ferroan dolo­
mite phases also occur as isolated vein- and mold-fill-
ing cement in relatively unaltered limestone of the 
Platteville Formation (Sheppard, 1982). Precipitation 
of the ferroan dolomite throughout the outcrop area 
probably overlapped with precipitation of marcasite 
and pyrite in the ore bodies (for example, Tupas, 
1950; Heyl and others, 1959), and with precipitation 
of disseminated epigenetic iron sulfide identified by 
Heyl and West (1982) and Garvin and others (1987). 

Late-stage hydrothermal calcite 

Four phases of progressively less-ferroan calcite pre­
cipitated after the peak of sulfide precipitation (fig. 
10, table 1; Calcites I-IV of Tupas, 1950). Although 
each calcite phase partially replaces precursor carbon­
ate phases, the hydrothermal calcite primarily form 
cement and are best developed within centimeter-scale 

vuggy pores containing marcasite and pyrite.
 Calcites I and II typically occur as isolated milli-

meter-scale cement crystals (fig. 10A). Calcite III 
forms larger, centimeter-scale scalenohedral cement 
crystals that are typically overgrown but not replaced 
by calcite IV (fig. 10B). Where these late-stage cal­
cites are abundant, calcite IV commonly occludes re­
maining pore space. Calcites I-IV are locally abundant 
within the Prairie du Chien Group and have also been 
documented within the Platteville Formation 
(Sheppard, 1982). 

NEAR-SURFACE WEATHERING 

Based on the absence of Mesozoic and Tertiary sedi­
ment, the study area has experienced nondeposition 
and/or erosion throughout most of the Mesozoic and 
Cenozoic. Karst development continues to the present. 
Other, relatively recent paleokarst is buried beneath 
Pleistocene glacial sediment. Post-hydrothermal car­
bonate diagenesis has been dominated by near-surface 
weathering and karst development, accompanied by 
the precipitation of aragonitic and calcitic 
speleothems. 

STABLE ISOTOPE GEOCHEMISTRY 

The results of 43 whole-rock analyses of Prairie du 
Chien Group dolomite, dolomite from Upper Missis­
sippi Valley District ores, and other Upper Cambrian 
and Middle Ordovician dolomite are shown in figure 
11 and table 2. Oxygen isotope values of Prairie du 
Chien Group dolomite ranges from δ18O = -6.39 to 
-3.49, whereas carbon isotopic values range from δ13C 
= -5.91 to -1.50. Isotopic values for oxygen and car­
bon do not display consistent geographic or strati­
graphic trends, and do not vary consistently based on 
rock type. The oxygen and carbon stable isotopic val­
ues of Upper Cambrian and Middle Ordovician dolo-

Table 1. Dolomite trace element data obtained by electron microprobe analysis. Values in parentheses indicate 
95% confidence intervals. 

Color* Fe/Mn Ca/Mg (moles) Fe (ppm, wt) Mn (ppm, wt) Sr (ppm, wt) Na (ppm, wt) 

A. Pre-hydrothermal dolomite (bulk composition) 
orange 
and red 1.6 1.05 (1.04, 1.06) 450 (340, 570) 290 (230, 340) 120 (60, 180) 210 (72, 350) 

B. Hydrothermal dolomites 1-5 
1- orange 3 1.03 (1.02, 1.04) 450 (370, 530) 350 (290, 410) 80 (40, 120) 40 (0, 170) 
2- red/blk 0.9 1.05 (1.04, 1.06) 120 (50, 180) 130 (70, 190) 90 (40, 140) 150 (20, 290) 
3- red 2.8 1.04 (1.03, 1.05) 2310 (1880, 2750) 820 (480, 1160) 90 (40, 150) 40 (0, 70) 
4- dark red 7.5 1.04 (1.02, 1.05) 5630 (4860, 6410) 750 (550, 950) 30 (-30, 90) 30 (-20, 90) 
5- black 12.8 1.00 (1.00, 1.02) 12780 (10560, 15010) 1000 (570, 1420) 110 (20, 200) 30 (-10, 70) 

*Color = cathodoluminescence color 
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mite sampled from out­
crops are generally simi­
lar to Prairie du Chien 
Group values. 

Oxygen and carbon 
isotopes from Upper 
Mississippi Valley dis­
trict ore samples are gen­
erally greater than values 
from outcrop samples. 
Oxygen isotopic values 
from Upper Mississippi 
samples range from δ18O 
= -3.74 to -2.42, and car­
bon isotopic values vary 
from δ13C = -0.29 to -

δ

0.18 (table 2). These 
numbers fall within the 
range of previously pub­
lished isotopic values of 
Upper Mississippi Valley 
ores (for example, fig. 
11; Hall and Friedman, 
1969; Garvin and others, 
1987; δ18O = -4 to -2, 

13C = -0.5 to +0.5) and 
are consistent with pre­
cipitation from hypersa­
line, evaporite-derived 
brines (for example, 
Kutz and Spry, 1989). 

Because of their his­
tory of partial replace­
ment and overgrowth, 
dolomite from Prairie du 
Chien Group outcrops is 
heterogeneous in compo­
sition (for example, fig. 
9). Therefore, the δ18O 
and δ13C values of Prairie 
du Chien Group dolo­
mite represent composi­
tional averages of 

Figure 10. Examples of hydrothermal calcites I-IV, lower Oneota Formation, 
Preston (PE), Minnesota. Roman numerals I-IV from Tupas (1950). A. Scale bar 
= 0.2 mm. B. Scale bar = 0.5 mm. 

graphic evidence for pervasive hydrothermal dolo­
syndepositional, shallow-burial, and hydrothermal do­
lomite. The δ18O values of Prairie du Chien Group do­
lomite are consistent with mainly seawater-derived, 
Early Ordovician calcium carbonate (for example, fig. 
11; Lohmann, 1988, p. 67). The δ13C values of Prairie 
du Chien Group dolomite is somewhat lower than 
Early Ordovician seawater-derived carbonate (for 
example, Lohmann, 1988, p. 67), but biogenic grains 
commonly display 12C enrichment (for example, 
Tucker and Wright, 1990, p. 325). In spite of petro­

mitization, Prairie du Chien Group dolomite does not 
appear to have acquired the heavier δ18O and δ13C val­
ues characteristic of Upper Mississippi Valley dolo­
mite. This combination of hydrothermally-overprinted 
microfabrics and non-Upper Mississippi Valley δ18O 
and δ13C values suggests that much of the replacive 
dolomitization in the Prairie du Chien Group has 
involved local dissolution and reprecipitation of pre­
cursor carbonate material. 
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Table 2. Values of δ13C and δ18O from Upper Cambrian to Middle Ordovician dolomite analyzed in this study. 
Values shown relative to the PDB standard. Samples are archived at the University of Wisconsin-Madison under 
“U.W.1866/number.” 

Sample δ13C (PDB) δ18O (PDB) Comments 

A. Galena and Decorah Formations 
MVT-2A, U.W.1866/30 -0.22

MVT-2B-1, U.W.1866/31 -0.18

MVT-2A-2, U.W.1866/32 -0.29

MVT-15B, U.W.1866/33 -0.22

BV-GAL, U.W.1866/29 -1.49


-3.74 sulfide ore, zoned dolomite 
-3.68 sulfide ore, saddle dolomite 
-3.61 sulfide ore, zoned dolomite 
-2.42 sulfide ore, zoned dolomite 
-5.32 outcrop,peloidal-bioclastic packstone 

B. Platteville Formation 
PE-PL, U.W.1866/36 -2.50 -6.24 outcrop, peloidal-bioclastic packstone 
PDC-PL-D, U.W.1866/35 -1.34 -5.48 outcrop, peloidal-bioclastic packstone 

C. Shakopee Formation (west to east, arranged stratigraphically for each location) 
PE-58, U.W.1866/47 -3.94

PE-50-OO, U.W.1866/45 -3.41

PE-50-ST, U.W.1866/46 -3.11

PDC-120, U.W.1866/44 -2.97

PDC-74, U.W.1866/43 -2.90

CZ-1, U.W.1866/37 -2.17

CZ-33, U.W.1866/40 -2.73

CZ-30, U.W.1866/39 -2.09

CZ-2, U.W.1866/38 -2.59

HR-21, U.W.1866/41 -2.92

HR-NR, U.W.1866/42 -4.68

BN-2-1, U.W.1866/64 -5.91

BN-2-2, U.W.1866/65 -5.79

BN-3, U.W.1866/66 -5.55


-4.82 outcrop, peloidal dolomicrite 
-3.49 outcrop, oolitic grainstone 
-5.10 outcrop, stromatolite 
-5.22 outcrop, oolitic grainstone 
-5.28 outcrop, peloidal dolomicrite 
-5.98 outcrop, oolitic grainstone 
-5.84 outcrop, oolitic grainstone 
-5.51 outcrop, peloidal dolomicrite 
-5.68 outcrop, oolitic packstone 
-5.46 outcrop, peloidal wackestone 
-5.07 outcrop, peloidal wackestone 
-5.20 cuttings, oo-peloidal packstone 
-5.00 cuttings, oo-peloidal packstone 
-5.10 cuttings, oo-peloidal packstone 

D. Oneota Formation (west to east, arranged stratigraphically for each location) 
PE-16-1, U.W.1866/57 -3.02

PE-16-2, U.W.1866/58 -3.07

PE-11, U.W.1866/56 -2.77

PDC-7, U.W.1866/55 -3.16

PDC-5, U.W.1866/54 -3.58

CZ-3-1, U.W.1866/48 -1.84

CZ-3-2, U.W.1866/49 -1.78

CZ-9, U.W.1866/53 -2.37

CZ-6, U.W.1866/52 -2.51

CZ-4-1, U.W.1866/50 -2.74

CZ-4-2, U.W.1866/51 -2.73

SW-7, U.W.1866/59 -2.36

BN-4, U.W.1866/67 -4.95

BN-5, U.W.1866/68 -3.61

BN-6-1, U.W.1866/69 -1.57

BN-6-2, U.W.1866/70 -1.50

BN-7, U.W.1866/71 -2.47


-4.86 outcrop, peloidal wackestone 
-4.87 outcrop, peloidal wackestone 
-5.15 outcrop, oolitic grainstone 
-4.86 outcrop, peloidal dolomicrite 
-4.90 outcrop, oolitic grainstone 
-6.23 outcrop, oo-peloidal packstone 
-6.39 outcrop, oo-peloidal packstone 
-5.84 outcrop, oo-peloidal packstone 
-5.79 outcrop, peloidal packstone 
-5.55 outcrop, oolitic packstone 
-5.61 outcrop, oolitic packstone 
-5.63 outcrop, stromatolite 
-5.39 cuttings, oolitic packstone 
-5.56 cuttings, oo-peloidal packstone 
-5.74 cuttings, oolitic grainstone 
-5.84 cuttings, oolitic grainstone 
-5.76 cuttings, oolitic grainstone 

E. Trempealeau Group (St. Lawrence Formation, west to east) 
RW-STL-1, U.W.1866/62 -0.47

RW-STL-2, U.W.1866/63 -0.48

BE-STL, U.W.1866/60 -0.56

M-STL, U.W.1866/61 -1.45

BN-8, U.W.1866/72 -2.27


-5.48 outcrop, dolomitic siltstone 
-5.46 outcrop, dolomitic siltstone 
-5.48 outcrop, stromatolite 
-4.91 outcrop, stromatolite 
-6.11 cuttings, dolomitic siltstone 
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δ
Figure 11. Scatter plot of 

18O and δ13C values from 
Upper Cambrian-Middle 
Ordovician dolomite 
analyzed in this study. Circle 
labeled “Early Ordovician” 
indicates estimate of 
seawater composition based 
on primary calcite 
compositions (Lohmann, 
1988). Rectangular field 
labeled “hydrothermal 
dolomite” indicates range of 
values obtained by Hall and 
Friedman (1969) and Garvin 
and others (1987) from 
dolomite associated with 
Upper Mississippi Valley 
district ores. 

CONCLUSIONS 

Carbonate diagenesis of the Prairie du Chien Group 
included syndepositional diagenesis, shallow-burial 
diagenesis, hydrothermal diagenesis, and near-surface 
weathering. Dolomitization has been a prominent as­
pect of carbonate diagenesis, and occurred during 
syndepositional, shallow-burial, and hydrothermal 
diagenesis, although shallow-burial dolomitization 
may actually be an early, relatively low-temperature 
phase of hydrothermal diagenesis. 

The sequence of diagenetic events within the 
Prairie du Chien Group is well-constrained by petrog­
raphy and cathodoluminescence petrography. Iron and 
magnesium trace-element data corroborate previous 
work on Upper Mississippi Valley ore paragenesis, 
and support a more detailed interpretation of the tim­
ing of hydrothermal dolomitization and late-stage hy­
drothermal calcite precipitation relative to the main 
phases of Upper Mississippi Valley ore precipitation. 
Values of δ18O and δ13C are consistent with precipita­
tion of most Prairie du Chien Group carbonate from 
Early Ordovician seawater. Although petrography and 
cathodoluminescence petrography indicate pervasive 
hydrothermal dolomite cementation and replacement 
of precursor carbonate, differences between the values 

of δ18O and δ13C for Prairie du Chien Group dolomite 
and dolomite from Upper Mississippi Valley ore de­
posits suggest that most hydrothermal dolomitization 
within the Prairie du Chien Group involved the disso­
lution and local reprecipitation of precursor carbonate 
material. In summary, because of sequential, partial, 
patchy replacement of preexisting carbonate phases 
by later phases, the diagenetic history of the Prairie du 
Chien Group is supported primarily by petrography 
and cathodoluminescence petrography, not by 
geochemical data. 
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