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ABSTRACT
Understanding the link between the sedimentology and the hydrogeology of the Eau Claire Formation 
within Dane and adjacent counties in western to south-central Wisconsin is critical to fl uid fl ow studies. 
The Eau Claire is a relatively fi ne-grained fossiliferous sandstone unit that lies between coarser-grained, 
highly porous, unfossiliferous sandstone of the underlying Mount Simon and the overlying Wonewoc 
Formations. It consists primarily of very fi ne- to medium-grained, variably feldspathic, glauconitic, and 
dolomitic sandstone locally interbedded with argillaceous siltstone and silty mudstone that has a coars-
ening and thickening upward succession. On the basis of sedimentary structures, lithology, and bedding 
characteristics, the Eau Claire is divided into fi ve lithofacies representing different paleowater depths of 
an epeiric shelf environment. The Eau Claire shallowing-upward succession is subdivided into up to fi ve 
depositional cycles laid down by repetitive shoreface progradation ranging from offshore–shoreface–
foreshore facies bounded at the base by a marine fl ooding surface. In places, sharp-based shoreface 
facies rest directly over offshore facies attesting to lowering of sea level. The depositional cycles and the 
structural contour and isopach maps suggest that the Eau Claire lithofacies deposition and distribution 
were controlled by the substrate, including the Wisconsin Arch and syndepositional faults, and sea level. 
The Eau Claire depositional facies model parallels a hydrostratigraphic model in which confi ning prop-
erties of the Eau Claire Formation decrease from offshore to foreshore facies. The aquitard qualities in-
crease from the Wisconsin Arch to the western outcrop belt because the formation is more heterogeneous 
to the west. 

INTRODUCTION
through rock, is a function of permeability, porosity, 
grain size, sorting, cementation, composition, sedi-
mentary structures, and stratifi cation (Freeze and 
Cherry, 1979). Factors such as geologic origin, depo-
sitional and post-depositional processes, and lithology 
can result in signifi cant heterogeneity and preferential 
fl ow pathways within aquitards. Consequently, knowl-
edge of the depositional environment and lithofacies 
distribution of the Eau Claire Formation should en-
hance understanding of its role as an aquitard region-
ally and locally. 

Our study focused on the link between the sedi-
mentology and hydrogeology of the Eau Claire For-
mation in southern and western Wisconsin (fi g. 1). 

Regional aquitards, extensive layers of relatively im-
permeable rock units, can restrict the movement of 
contaminants and thus protect aquifers used for mu-
nicipal water supplies. The Eau Claire Formation, 
which consists of fi ne-grained sandstones, siltstones, 
and mudstones, is a regional aquitard that impedes the 
exchange of groundwater between the Mount Simon 
aquifer and other main overlying aquifers in Wiscon-
sin (Bradbury and others, 1999). 

Hydrogeologic studies have been hampered by a 
lack of understanding of the variable thickness and li-
thology of the Eau Claire Formation (Krohelski and 
others, 2000; Gotkowitz and others, 2005). Hydrau-
lic conductivity, a parameter describing fl uid fl ow 
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Figure 1. A. Regional map showing early Paleozoic tectonic features and major paleotopographic 
highs of Precambrian rocks in the central midcontinent region. Modifi ed from Runkel (1994). 
B. Core and outcrop location map. Diamonds represent the locations of the outcrop and well sec-
tions shown in fi gure 2. C. Locations of water wells and coreholes used in this study. Solid stars, 
circles, triangles, and squares represent more reliable to less reliable control points, respectively. 
Cores represented by open stars. Well data provided by the Wisconsin Geological and Natural His-
tory Survey. 
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This work may assist in predicting locations of the 
Eau Claire lithofacies in areas for which rock data are 
limited and may help explain the regional distribution 
of porosity and permeability, the major controls on 
fl uid fl ow. 

METHODOLOGY
We compiled outcrop and subsurface data within the 
Upper Mississippi Valley for our study. The subsur-
face data come primarily from Dane County in south-
central Wisconsin; the outcrop information, from 
western Wisconsin (fi g. 1). We used lithostratigraph-
ic and sedimentologic data from outcrops, cores, cut-
tings, and borehole geophysical logs. Stratigraphic 
sections were measured and logged using a handheld 
natural spectral gamma-ray detector (Exploranium 
spectrometer, GR-320 enviSPEC). Weathered parts of 
outcrop faces were scraped before being measured. 
Four cores with gamma-ray borehole logs (Mount So-
pris Instruments gamma-ray probe, 2PGA-1000) were 
also described. With gamma ray tools, total gamma 
and the amount of potassium, uranium, and thorium 
were measured in counts per second (cps). We studied 
36 thin sections from cores and outcrops that are rep-
resentative of the upper parts of the Mount Simon and 
Eau Claire Formations and the lower part of the Wone-
woc Formation to determine mineral composition and 
grain size at 400 equally spaced points on each slide. 
In addition to the sedimentologic study, porosity and 
permeability of 15 samples from Tilden Quarry, West 
Tilden roadcut, and Willow River outcrop were mea-
sured at 400 pounds per square inch confi ning stress 
by conventional core-analysis techniques (using a 
Core Laboratories CMS-300 instrument) to investigate 
hydrostratigraphic trends. 

We used subsurface data to generate structural 
contour and isopach maps. We reexamined 96 litho-
logic logs derived from cuttings that had been previ-
ously studied by Wisconsin Geological and Natural 
History Survey staff. We developed a continuum of re-
liability of well information. The most reliable infor-
mation came from those wells that had cuttings with 
detailed descriptions supported by gamma-ray bore-
hole logs; less reliable were wells that had detailed 
descriptions, but no gamma-ray measurements; next 
in reliability were wells that had gamma-ray logs, but 
poor descriptions; the least reliable were wells that 
had poor descriptions and no gamma-ray measure-
ments.

EAU CLAIRE FORMATION
The Eau Claire Formation overlies the Mount Simon 
Formation and underlies the Wonewoc Formation. The 
Eau Claire Formation was deposited in a cratonic en-
vironment that included intracratonic basins and scat-
tered arches and domes (Ostrom, 1978). During the 
Cambrian, the seafl oor in what is now northern Wis-
consin was near the Wisconsin Dome. Our core data 
came from Dane County, which is on the southwest-
ern side of the Wisconsin Arch, a southeast–trending 
extension of the Wisconsin Dome; our outcrop data 
came from west of the dome (fi g. 1).

The Eau Claire Formation is part of the Marju-
man (Cedaria and Crepicephalus trilobite zone) to 
Steptoean (Aphelaspis trilobite zone) Stage of the Up-
per Cambrian Croixian Series and is predominantly 
very fi ne- to medium-grained, moderately to well sort-
ed, variably feldspathic, glauconitic, and dolomitic 
sandstone with variable amounts of siltstone and mud-
stone. It has a distinctive gamma-ray signature that 
has a sharp base and up to fi ve peaks of high gamma-
ray values that decrease in magnitude up-section (fi g. 
2). Correlation of the gamma ray values and the lithol-
ogy of the Eau Claire showed that the peaks repre-
sent greater potassium feldspar content in the very fi ne 
sand and silt than in the coarser-grained sand. 

On the basis of petrographic analysis, we found 
two major differences between Eau Claire core and 
outcrop samples (fi g. 3): 1) sand grains of core sam-
ples are much coarser than those of outcrop samples, 
and 2) potassium feldspar is a major component in 
outcrop samples, but almost absent in cores. These 
differences support the feldspar and grain-size rela-
tionship proposed by Odom (1975), who suggested 
that, in the Upper Cambrian rocks, feldspar is concen-
trated in sediments fi ner than 0.125 mm. We deter-
mined that the differences between cores and outcrops 
were infl uenced by the proximity to the shoreline, re-
sulting in differences in the energy and the depth of 
deposition. In Dane County (core area), the Eau Claire 
was deposited closer to the shoreline within shallower 
water and higher energy conditions, so it is less feld-
spathic and has coarser sediments. 

EAU CLAIRE LITHOFACIES 
The Eau Claire Formation was fi rst divided into litho-
facies on the basis of bedding type and mudstone con-
tent by Morrison (1968) and Huber (1975) in geo-
graphically restricted investigations in west-central 
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Figure 2. Gamma-ray characteristic of the Eau Claire Formation, from outcrop: A. Tilden 
composite section; and from core: B. Well 131467 (Nine Springs) and C. Well 131486 
(Cottage Grove MP6). See fi gure 1 for locations of outcrop and wells.
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Figure 3. Frequency diagram, showing 
grain-size distribution of quartz and 
potassium feldspar in core and outcrop 
samples.

Table 1. Eau Claire lithofacies A–E. HCS = hummocky cross-stratifi cation; SCS = swaley cross-
stratifi cation; TCS = trough cross-stratifi cation; FWWB = fair-weather wave base. Ichnofacies 
and ichnofabric index are described in Pemberton and others (1992) and Droser and Bottjer 
(1986), respectively.
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characteristics

Sedimentary 
structure
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hn
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x

Contact 
relation  

with 
underlying 
lithofacies

Depositional 
environment

A: Mudstone 
     and siltstone   
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sandstone
       

At least 1-ft interval 
of very thin- to thin-
bedded mudstone 
and siltstone; 
very thin-bedded 
sandstone also 
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Soft sediment 
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!
    

Wisconsin. The most recent regional study related to 
the Eau Claire Formation was completed by Runkel 
and others (1998). They divided the Eau Claire into 
three units on the basis of the Upper Cambrian trilo-

bite zones, showing that the formation is a distal facies 
of the overlying Wonewoc Formation (Crepicepha-
lus and Aphelaspis trilobite zones) and the underlying 
Mount Simon Formation (Cedaria trilobite zone).

We have divided the Eau Claire Formation into 
fi ve lithofacies on the basis of sedimentary structures, 
lithology, and bedding characteristics (table 1). Inter-
bedding of the thin- and thick-bedded lithofacies with-
in the formation delineates sandier-upward succes-
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gray in outcrop; in core, the color rang-
es from green to gray, pink to maroon, 
and buff. The sandstone is very light 
gray to yellowish brown in outcrop; the 
sandstone in core is gray, pink, dark 
green, and buff. This lithofacies is lo-
cally glauconitic, dolomitic, and mica-
ceous. Sedimentary structures are not 
well preserved, possibly because of the 
intense bioturbation. 

Lithofacies B consists of 0.5- 
to 11.6-ft intervals of thin-bedded, 
very fi ne- to fi ne-grained (to medium-
grained in core), variably glauconitic 
sandstone intercalated with substan-
tial argillaceous siltstone and mudstone 
(fi gs. 5 and 7). The sandstone is light 
gray, light tan, yellowish brown, and 
dark green; the siltstone and mudstone 
are green to dark gray. In core, this lith-
ofacies is also pink to maroon and buff. 
Outcrop samples are feldspathic and 
micaceous; cores are dolomitic. Sand-
stone beds pinch and swell laterally 
and are locally lenticular (fi g. 8). They 
commonly display sharp, scoured bas-
es. Mudstone and argillaceous siltstone 
are found in discontinuous drapes and 
very thin, laterally continuous beds.

The microhumocky cross-strati-
fi cation is characterized by glauconite 
concentration and very thin-bedded 
siltstone and mudstone. It contains thin 
hummocks and swales that have wave-
lengths of 1.5 to 2.5 ft. Sets of laminae 
intersect at low angles. Low-angle to 
wavy lamination could be associated 
with the microhummocky cross-strati-
fi cation. The upper surface of the sand-
stone beds commonly has oscillation 

ripples. Bioturbation obscures the original bedding in 
places. 

Lithofacies C consists of less than 1.0-ft to 
15.0-ft intervals of thick to very thick-bedded, very 
fi ne- to fi ne-grained (medium-grained at the top of 
the formation in outcrop and throughout the forma-
tion in cores), variably glauconitic sandstone inter-
calated with green siltstone and mudstone laminae 
or drapes (fi g. 9). The laminae are rare compared to 

Figure 4. Interbedding of thin- and thick-bedded lithofacies of the 
Eau Claire Formation at Tilden Quarry. 

Figure 5. Very thin- to thin-bedded silty mudstone and argillaceous 
siltstone of lithofacies A overlain by lithofacies B at Neshonoc Lake.

sions (fi g. 4). Because sedimentary structures are dif-
fi cult to defi ne in cores, our Eau Claire lithofacies de-
scription is mostly based on outcrop observation. 

Lithofacies A is composed of 1.0- to 6.4-ft in-
tervals of very thin to thin-bedded, relatively well ce-
mented, silty mudstone, argillaceous siltstone, and 
sandy siltstone (fi g. 5). Very thin-bedded, very fi ne-
grained (fi ne grained in core) sandstone is common 
(fi g. 6). The siltstone and mudstone are green to dark 
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Figure 6. A. Lithofacies A of Nine Springs core, showing presence of very thin-bedded, very 
fi ne-grained sandstone within more prominent siltstone and mudstone. B. Photomicrograph 
taken from sample 131467-289.8 with plane-polarized light. 

Figure 7. Thin-bedded sandstone 
of lithofacies B intercalated with 
argillaceous siltstone and mudstone. 
A. Outcrop at Willow River. B. Core 
from well 131486 (Cottage Grove MP6). 
C. Photomicrograph taken from sample 
131486-346.3 with plane-polarized 
light. Q = quartz; G = glauconite; 
D = dolomite; and P = pore space.

A

A B

B

C
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those in lithofacies B. Thick sandstone beds locally 
compose amalgamated thin-bedded, plane parallel-
laminated sandstone. Color ranges from very light 
gray to light tan to pink. This lithofacies is feldspathic 
and micaceous in outcrop and dolomitic in core. 

The variation of sedimentary structures in litho-
facies C in outcrop can be used to separate it into four 
sublithofacies. Sublithofacies Ca consists of hum-
mocky cross-stratifi cation; its low-angle, gently un-
dulating laminae are formed by broad convex-upward 
hummocks and concave-upward swales with wave-
lengths of 3.0 to 5.0 ft. Sublithofacies Cb has planar 

lamination and less-prominent hum-
mocky cross-stratifi cation. Sublithofa-
cies Cc contains swaley cross-stratifi -
cation with broad, very low-angle con-
cave-upward laminae that have some 
planar to low-angle internal truncation 
surfaces. Although the swales rarely 
pass laterally into hummocks, the pres-
ence of some convex-upward laminae 
in a swaley sandbody indicates a genet-
ic similarity to hummocky cross-strati-
fi cation. Sublithofacies Cd is dominat-
ed by planar to low-angle lamination 
that has a trace of swaley cross-strati-
fi cation. All four sublithofacies locally 
display preserved asymmetric and sym-
metric ripple forms on top of sandstone 
beds. 

In core, we separated lithofacies 
C into two sublithofacies: C1 and C2. 
Sublithofacies C1 is similar to sublitho-
facies Ca, Cb, and Cc; sublithofacies 
C2 is comparable to sublithofacies Cd. 
Sublithofacies C1 can be recognized 
by high- to low-angle cross-lamination 
and wavy lamination, which are like-
ly to be associated with hummocky to 
swaley cross-stratifi cation. Sublitho-
facies C2 can be defi ned by low-angle 
to planar lamination and lack of clear 
sedimentary structures as is sublithofa-
cies Cd.

Lithofacies D is entirely sand-
stone, typifi ed by 1.6- to 8.0-ft inter-
vals of thick- to very thick-bedded suc-
cessions of very fi ne- to fi ne-grained 
(up to lower medium in cores), trough 

cross-stratifi ed, variably glauconitic sandstone (fi g. 
10). Color ranges from light tan to rusty tan, plus 
white to light pink in cores. Rip-up clasts of sand-
stone and dolomite are present. Well organized cross-
sets are typically 0.3 to 1.0 ft thick. They are com-
monly superimposed on one another to form thick, 
amalgamated successions. 

Lithofacies E is entirely sandstone, character-
ized by a 5.0-ft interval of very thick-bedded, very 
fi ne- to fi ne-grained, light tan to rusty tan, planar-lam-
inated sandstone (fi g. 11). Laminations dip very gen-
tly from each other.

Figure 8. Bedding style of lithofacies B at Tilden Quarry. 
Sandstone beds pinch and swell laterally and locally lenticular.

Figure 9. Thick- to very thick-bedded sandstone of lithofacies C 
intercalated with siltstone and mudstone laminae. A. Outcrop at 
Tilden Quarry. B. Core from well 131486. The outcrop also shows 
amalgamated thin bedded, planar-laminated sandstone.

A B
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LITHOFACIES 
INTERPRETATION 
AND DEPOSITIONAL 
ENVIRONMENT
Our study indicated that the lithofacies 
and accompanying sedimentary struc-
tures of the Eau Claire were deposited 
in an epeiric shelf environment rang-
ing from offshore to foreshore facies 
(fi g. 12). We interpreted lithofacies A 
to have been deposited in a quiet-wa-
ter environment below the storm-wave 
base representing an offshore facies 
(Howell and Flint, 2003). Lithofacies 
B represents an offshore transition fa-
cies deposited by storm-generated os-
cillatory waves below the fair-weather-
wave base, but above the storm-wave 
base (Dott and Bourgeois, 1982; Leckie 
and Walker, 1982; Duke, 1985). Dur-
ing storms, sands were eroded from 
the shoreward zone and redeposited 
in a microhummocky, cross-stratifi ed 
sheet-like blanket across the shelf. Dur-
ing fair-weather periods, clays and silts 
were deposited from suspension and 
covered the sheet of sand laid down 
during the storms. We interpreted litho-
facies C to represent lower shoreface 
facies deposited by storms in water 
depths close to the fair-weather-wave 
base, where the seabed was constantly 
agitated and clays and silts were rarely 
deposited (Howell and Flint, 2003). The 
sublithofacies Ca–Cd indicate slight-
ly different settings: from a deeper and 
lower energy environment of sublitho-
facies Ca to a shallower and higher en-
ergy environment of sublithofacies 
Cd (Leckie and Walker, 1982; Walker, 
1985; Duke, 1990). We interpreted the 
trough cross-bedded sandstone, lithofa-
cies D, and planar-laminated sandstone, 
lithofacies E, to be upper shoreface and foreshore fa-
cies, respectively. The sedimentary structures and the 
lack of mica suggested conditions of high fl ow veloc-
ity and shallow water depth (Collinson and Thomp-
son, 1989). Lithofacies D and E are rare in the Eau 
Claire, but common in the Wonewoc and Mount Si-

Figure 10. Thick- to very thick-bedded, trough cross-stratifi ed 
sandstone of lithofacies D at Willow River. The broomstick is 
marked every 6 in.

Figure 11. Very thick-bedded, planar-laminated sandstone of 
lithofacies E at Willow River. The broomstick is marked every 6 in.

mon Formations. This is consistent with fl ooding of 
the shoreline (Mount Simon–Eau Claire contact), fol-
lowed by shallowing upward and progradation of the 
Wonewoc over the deeper-water Eau Claire. 

Lithofacies D and E were deposited within an en-
ergetic nearshore environment, close to the arch, in a 
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storm-dominated shoreface and in an intertidal zone, 
respectively. The lower shoreface sediment (lithofa-
cies C) was transported by storm-enhanced currents—
along the shore by longshore currents and away from 
the shore by rip currents (Runkel, 1994; Byers and 
Dott, 1995; Runkel and others, 1998) following topo-
graphic differences on the seafl oor. Immediately sea-
ward, lithofacies B sediment was buried during storms 
and graded basinward to the mudstone of lithofacies A. 

The lithofacies of the Eau Claire Formation are 
also distinctly expressed in the relationship between 
the Eau Claire sediments and the total gamma of these 
sediments as measured in outcrop and in the subsur-
face. The total gamma-ray measurements of the Wone-
woc and Mount Simon Formations (table 2) are for 
the base and the top, respectively. Figure 2 and table 2 
show that the gamma decreases from lithofacies A to 
lithofacies D. On the basis of the subsurface data, the 
Eau Claire lithofacies of some intervals can be iden-
tifi ed with the total gamma. The highest total gamma 
mostly corresponds to the lithofacies A (>100 cps) or 
B (<100 cps) of the second depositional cycle from 
the base of the formation. If the highest gamma repre-
sents lithofacies A, the peak of the bottom deposition-
al cycle can be interpreted as representing shallower-
water facies because the highest gamma-ray values of 
each depositional cycle decrease in magnitude up-sec-
tion. If the highest total gamma of the bottom cycle is 
more than 200 cps, this interval consists of lithofacies 
B. If it is less than 200 cps, then lithofacies C com-
poses this interval. Notably, lithofacies D and E nev-

er corresponded to the peaks of any cycles, except the 
uppermost cycle of the Cottage Grove MP6 core (well 
131486). 

STRATIGRAPHIC SUCCESSIONS 
AND CYCLICITY OF THE EAU CLAIRE
Correlation of a composite section based on outcrops 
in Chippewa County and the descriptions of two cores 
in Dane County demonstrates cyclicity and lithofacies 
repetitions within the Eau Claire stratigraphic suc-
cessions (fi g. 13). Note that the two cores show more 
proximal facies than the Tilden section, which repre-
sents more distal deposits. 

The overall vertical stacking of the Eau Claire 
lithofacies represents shallowing-upward successions 
and internally can be subdivided into depositional cy-
cles characterized by repetitions of lithofacies. The 
cycles are defi ned by deeper-water facies overlying 
shallower-water lithofacies. In outcrop it is possible to 
recognize up to eight lithofacies repetitions; the cores 
show no more than six lithofacies repetitions. With re-
spect to subsurface correlations based on total gamma 
ray measurement, each Eau Claire depositional cy-
cle is bounded at its base by a relatively high gamma 
count; we interpreted this to be a marine fl ooding sur-
face, which is marked by an abrupt change from shal-
low- to deeper-water facies. We interpreted the inter-
vals that have lower gamma counts to be grading into 
a shallowing-upward succession. The outcrop shows 
at least fi ve cycles, but the cores show only four cy-
cles. It is important to note that the cores and outcrop 

Figure 12. Shallow marine profi le, showing the typical succession of the Eau Claire Formation. 
(Modifi ed from Coe and Church, 2003.)
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n Outcrop Core

Total gamma (cps) Average total 
gamma (cps)

Total gamma 
(cps)

Average total 
gamma (cps)

W 1,431–2,587 2,182 1.7–14.0 8.4

E 2,121–2,991 2,724 — —

D 3,187–3,617 3,407 4.2–14.1 8.7

C 3,259–6,833 4,972 1.7–196.3 26.5

B 3,909–10,101 6,565 1.6–273.2 57.3

A 4,125–9,738 7,259 12.1–289.4 105.7

MS 2,973–5,784 4,638 7.2–37.4 20.4

Table 2. Total gamma-ray measurements showing geophysical trends within the 
Eau Claire Formation. The difference between core and outcrop measurements is 
due to the different tools used in the study. W = Wonewoc Formation; MS = Mount 
Simon Formation.

are separated by approximately 150 miles and that 
part of this variability can be explained by changes 
in lithology and stacking along depositional strike. 
On the other hand, the cores are separated by only 12 
miles; the variability between them may be a result of 
deposition at different locations in relation to the Wis-
consin Arch.

Generally, the contacts between lithofacies are 
gradational, with two exceptions. The basal contact 
of each cycle refl ects an abrupt change from shallow- 
to deeper-water facies that we interpreted as marine 
fl ooding. Cementation and faunal lags are common at 
these surfaces. In some places, sharp-based shoreface 
sandstone (lithofacies C and D) rests directly over 
lithofacies B (Willow River section), interpreted by 
Walker and Plint (1992) to be the result of prograda-
tion due to a relative sea level fall. In other places, the 
microhummocky cross-stratifi ed sandstone of lithofa-
cies B is overlain by hummocky cross-stratifi ed sand-
stone of sublithofacies Cb; the contact is marked by 
gutter casts (Bruce Valley Quarry), which Aswaser-
eelert (2005) interpreted as being formed by wave 
scour on the bed. Lithofacies Cc and Cd are present 
only in the sharp-based successions; we interpreted lo-
cal wave-base erosion during regression to have led to 
sharp and, in some locations, erosive contacts between 
the offshore transition microhummocky strata and the 
shoreface sandstones.

Morrison (1968), Ostrom (1970), DiStefano 
(1973), and Huber (1975) suggested that erosive con-

tacts and sudden changes in lithology between the 
Eau Claire and the Wonewoc Formations may be as-
sociated with a signifi cant unconformity. However, 
Havholm (1998) and Runkel and others (1998) de-
scribed the Eau Claire–Wonewoc contact as gradation-
al and becoming younger to the west, which would 
likely be the result of the nearshore marine Wonewoc 
prograding across the Eau Claire sediment. Our out-
crop investigation showed that local wave-base ero-
sion resulted in sharp contacts between offshore tran-
sition strata and shoreface sandstones and in turn 
could be responsible for the thickness variability of 
the Eau Claire Formation. Therefore, we concluded 
that the unconformity-like feature between the Eau 
Claire and the Wonewoc Formations was due to local 
wave-base erosion and facies changes, not to any sig-
nifi cant period of nondeposition or extensive erosion 
of previously deposited sediment.

REGIONAL CONTROLS 
ON EAU CLAIRE DISTRIBUTION 
The amount of data from outcrops and cores (high-
quality data) was insuffi cient to allow us to adequately 
defi ne the regional distribution of the Eau Claire For-
mation; therefore, we used subsurface logs derived 
from cuttings (generally lower quality or more inter-
pretive data) from the Wisconsin Geological and Nat-
ural History Survey to interpolate between high-quali-
ty data points. 
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We used the relative amounts of sandstone and 
mudstone to defi ne the Eau Claire lithofacies in the 
cuttings. Cuttings composed of shale and siltstone 
were interpreted to represent lithofacies A. When 
sandstone dominated, depending on the amount of 
shale and siltstone present, that interval could be lith-
ofacies B (large amounts of clay- to silt-sized sedi-
ments), C (trace amount of clay- to silt-sized sedi-
ments), or D and E (no sediments fi ner than sand were 
present).

The structural contour map of the Precambrian 
basement in Dane County shows a north–south trend-
ing high and three east–west trending faults (fi g. 14A). 
The high and the faults are also refl ected in the struc-
tural contour maps of the base of the Eau Claire For-
mation and the Tunnel City Group (fi g. 14B and 14C). 
The isopach maps of the Eau Claire and the combined 
Eau Claire–Wonewoc (fi g. 14D and 14E) refl ect the 
fact that the Eau Claire Formation progressively thins 
from 110 ft in southwestern Dane County to 40 ft in 
central Dane County; it is absent in northeastern Dane 
County. This is consistent with the interpretations of 
Twenhofel and others (1935), Odom (1975), and Run-
kel and others (1998), who suggested that the Eau 
Claire is thinned by virtue of its upper and lower parts 
grading laterally into the progressively thicker Mount 
Simon and Wonewoc Formations toward the Wiscon-
sin Arch.  

The Eau Claire and the combined Eau Claire–
Wonewoc isopach maps (fi g. 14D and 14E) demon-
strate that faulting is a major control on the thickness 
variation and the stratigraphic boundaries of the Eau 
Claire Formation (fi g. 14D and 14E). The faults were 
identifi ed in areas where the contour lines were close 
to each other or where the elevations of the Eau Claire 
structural contour map and the thickness of the Eau 
Claire isopach map changed so abruptly that it could 
be evidence of displacement. The thickness contours 
of the Eau Claire Formation are substantially infl u-
enced by the faults; the faults have relatively less ef-
fect on the combined Eau Claire–Wonewoc thickness. 
Cross sections on the regional surface at the base of 
the Tunnel City Group show that the Wonewoc For-
mation (fi g. 15) thins across faults corresponding to 
abrupt changes in the Eau Claire–Wonewoc boundary 
elevations, and the elevations change abruptly at the 
base of the Eau Claire across the faults. Consequently, 
we interpreted the faults to be active during the depo-
sition of the Eau Claire and the Wonewoc.

The structural contour and isopach maps show 
a north–south trending structural high (fi g. 14). This 
high is evidence that the Eau Claire deposition was 
also infl uenced by the north–south trending positive 
feature of the Precambrian substrate associated with 
the Wisconsin Arch, which modifi ed the paleocurrents 
and sediment distribution. These maps indicate the 
shape of the north–south trending high was modifi ed 
by syndepositional faults. In addition to the infl uence 
of the bedrock substrate varying over time, the cyclic-
ity within the Eau Claire Formation can be reasonably 
attributed to relative sea-level fl uctuations that forced 
shorelines to move seaward and landward. 

HYDROSTRATIGRAPHIC IMPLICATIONS
The permeability contrast between lithofacies and 
between depositional cycles, the vertical and lateral 
trends in porosity and permeability, and the amount, 
thickness, and continuity of mudstones are particular-
ly important to fl uid fl ow through the Eau Claire For-
mation. The Eau Claire is a heterogeneous and aniso-
tropic aquitard due to the discontinuity and vertical 
stacking pattern of the lithofacies within the forma-
tion. The aquitard nature of the Eau Claire Formation 
is defi ned primarily by two components: low perme-
ability mudstone and siltstone and higher permeability 
sandstone.

Some of the best evidence for the Eau Claire be-
ing an aquitard comes from test well 131467 at the 
Nine Springs site, where a packer slug test was used 
to measure horizontal hydraulic conductivity (Kh) and 
static head of the Eau Claire (Bradbury and others, 
2006; fi g. 16). A signifi cant drop in hydraulic head—
approximately 30 ft across the Eau Claire–Mount Si-
mon contact—shows that the Eau Claire Formation 
acts as a major aquitard. The Kh values for the Eau 
Claire fall into the clay–silt category, even though 
the sandstone dominates lithofacies B; this is con-
sistent with our outcrop investigation, which showed 
that the mudstone and siltstone strata of this lithofa-
cies are generally more laterally continuous than the 
sandstone beds (Aswasereelert, 2005). This continu-
ity along with the thickness of the mudstone and silt-
stone is likely to be signifi cant to fl uid fl ow through 
the aquitard. The vertical hydraulic conductivity is 
very diffi cult to measure directly; we inferred it to be 
low because the aquitard holds up about 30 ft of hy-
draulic head.

The mudstone and siltstone of the Eau Claire For-
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mation, which are interpreted to act as a major barrier 
to fl uid fl ow, dominate lithofacies A and lithofacies B. 
On the basis of Kh values (Bradbury and others, 2006) 
and lithofacies distribution, the amount, thickness, and 
continuity of mudstone and siltstone are particularly 
important to fl uid fl ow through the Eau Claire aqui-
tard. The thickness of the least permeable strata, lith-
ofacies A, can vary from approximately 2 ft up to 25 
ft. The distribution of lithofacies A shows the most ir-
regularity: It can be present in one well, but absent in 
another less than 10 miles away. Lithofacies A might 
have been preserved as either extensive strata or dis-
continuous patches; lithofacies B, which is present 
in all the wells (fi g. 15), comprises much of the Eau 
Claire Formation. 

The stacking pattern of the Eau Claire succession 
is also signifi cant to fl uid fl ow. The Eau Claire depo-
sitional cycles, bounded above and below by fl ood-
ing surfaces, represent the building block of the Eau 
Claire aquitard being separated by a surface of high 
permeability contrast between the offshore (lithofa-

cies A) or offshore transition (lithofacies B) facies and 
the various shoreface facies (lithofacies C, D, and E) 
of the underlying strata. The difference in facies above 
and below the cycle boundaries can result in fl ow-unit 
boundaries that have signifi cant permeability differ-
ences. For instance, the permeability and porosity of 
the Tilden Quarry sandstones studied in outcrop in 
Chippewa County increase from 328.3 millidarcies 
(md) and 28.1 percent (lithofacies B) to 811.1 md and 
29.4 percent (lithofacies C); the samples are only 3 ft 
apart (fi g. 17).

The most porous and permeable strata are the 
relatively high depositional energy lower and upper 
shoreface and foreshore sandstones (lithofacies C, D, 
and E; fi g. 12). The increase in porosity and permea-
bility can be tied to an increase in depositional energy, 
which resulted in 1) better grain sorting and an associ-
ated decrease in the amount of fi ne-grained sediment 
within pore spaces; 2) fewer and thinner mudstone 
layers; and 3) a decrease in cementing materials. As a 
result, porosity and permeability are lower from upper 
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Elevation (in feet) based on sea level. Faults (dashed line) based on Eau Claire 
structural contour map. Elevation (in feet) based on sea level. Solid stars, circles, 
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respectively. Cores represented by open stars. 
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Figure 15. A. Cross sections of the Eau Claire 
Formation datum at the base of the Tunnel City Group, 
showing lithofacies variations and syndepositional 
faults. B. Lines of cross sections. 
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Lithology and structure
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Figure 16. Stratigraphic section of an Eau Claire interval, showing results 
from a packer-slug test at the Nine Springs site (well 131467). Bars show 
horizontal hydraulic conductivity (Kh) derived from slug test using infl atable 
straddle packers to isolate various sections of the borehole. Width of bars 
represents width of packed intervals. Hydraulic heads were measured using 
pressure transducers; Kh and hydraulic head data from Bradbury and others 
(2006). MS = Mount Simon Formation.

shoreface sandstones to offshore mudstones. This cor-
responds to the previously mentioned increase in gam-
ma-ray values from lithofacies D to lithofacies A. We 
concluded that the greater the permeability, the lower 
the gamma-ray values and the higher the depositional 
energy.

The relationships among the various lithofacies 
imply that the hydraulic properties of the aquitard are 
directly related to the geometry and distribution of 
lithofacies, which are a function of the depositional 
environment. Therefore, it should be possible to relate 
trends in the distribution of hydraulic properties to the 
distribution of lithofacies in the aquitard system. Re-
gionally, more depositional cycles and more shallow-
ing-upward successions are present along the western 
outcrop belt than in the area near the Wisconsin Arch. 
As a consequence, the Eau Claire Formation becomes 
more of a barrier to fl uid fl ow from the Wisconsin 
Arch to the west.

SUMMARY 
We have divided the Eau Claire Formation into fi ve 
lithofacies based on sedimentary structures, litholo-

gy and bedding characteristics representing a shallow 
marine depositional shelf deposit ranging from off-
shore-shoreface-foreshore facies. In general, the for-
mation thickens to the south and the west. The number 
of vertical stackings, potassium feldspar grains and 
sediments fi ner than fi ne sand increase from eastern 
Dane County to the western outcrop belt due to the 
proximity to the shoreline or the Wisconsin Arch. The 
structural contour and isopach maps and the cyclicity 
of the Eau Claire Formation suggest that the Precam-
brian substrate (Wisconsin Dome and Arch), synde-
positional faulting, and sea level fl uctuation are major 
controls on the Eau Claire lithofacies deposition and 
distribution. The Eau Claire aquitard is likely to retard 
fl uid fl ow to the west from the arch to the western out-
crop belt.
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