University of Wisconsin-Extension

GEOLOGICAL AND NATURAL HISTORY SURVEY 3817 Mineral Point Road Madison, Wisconsin 53705

M.E. Ostrom, State Geologist and Director

SAMPLING OF COPPER-BEARING KEWEENAWAN ROCKS OF NORTHWESTERN WISCONSIN

bу

C.E. Dutton

Open-File Report 72-9 19 p. + 1 plate

This report represents work performed by the Geological and Natural History Survey, and is released to the open files in the interest of making the information more readily available. This report has not been edited or reviewed for conformity with Geological and Natural History Survey standards and nomenclature.

Sampling of copper-bearing Keweenawan rocks of northwestern Wisconsin

by

Carl E. Dutton, Madison, Wisconsin

Abstract. Metallic copper or copper minerals are locally present in flows, conglomerate, siltstone, and shale of Keweenawan age that underlie about 3,000 square miles of northwestern Wisconsin. Representative samples taken from 24 of the reported occurrences in lava or conglomerate contain 0.0075 to 0.69 percent copper; 10 of them have more than 0.10 percent. No study was made to appraise the geologic settings of the sampled sites as guides to possibly more significantly mineralized rock. The siltstone and shale sequence is sparingly exposed in Wisconsin but was not sampled; exploratory drilling has shown that it is mineralized locally.

Introduction

Metallic copper or copper minerals are locally present in extrusive and sedimentary rocks of Keweenawan age in a part of northwestern Wisconsin that is approximately 40 miles wide, 50 to 100 miles long, and that trends about N.55° E. (fig. 1). The northeastern and southwestern limits are about 60 and 100 miles, respectively, from Superior, Wis. The area includes much of Douglas and Bayfield Counties and part of Washburn, Burnett, and Polk Counties. Part of Ashland County is also underlain by rocks of Keweenawan age, but no occurrences of copper or copper minerals are known in them.

The Keweenawan rocks continue southwestward from Michigan where they contain minable deposits of metallic copper or copper minerals, and occurrences of these minerals at many localities in Wisconsin have been reported. A preliminary appraisal of the reported occurrences versus outcrops in which no copper minerals had been reported was sought in 1968 by chemical and spectographic analyses of 69 chip samples from 43 localities (fig. 1). The results (tables 1 and 2) are less encouraging than anticipated, but the relation of the localities to possible geologic controls for more favorable mineralization may warrant investigation.

Reports by Chamberlin and others (1880), Irving (1883), and Grant (1901) are mainly of interest as historical accounts of early recognition and interpretation of general geologic features of the area. Aldrich (1929) briefly summarized the lithologic, stratigraphic, and structural features of the formations of Keweenawan age, some of which are northwest of the Gogebic iron district, the principal subject of

 $U=S=GOV\,ERNMENT$) RIVTING OFFICE : 1919 O = 11111

10-

60.

1

2

3

5 —

6

7

8

9

13

14

16

17

18

19

21

22

23

24

25

20 -

2

3

4

6

7

8

9

11

12

13

14

16

17

18

19

21

22

23

24

25 -

15~

5 -

his report. Smith (1947) gave a summary of work at an exploration about 1906 and of a reexamination by the U.S. Bureau of Mines and U.S. Geological Survey in 1944-45. Leighton (1954) discussed a gabbrogranophyre complex in the eastern part of the area. Holliday (1955) described the investigation of a copper-nickel prospect. Sedimentologic features of upper Keweenawan rocks in Wisconsin were discussed by Hite (1968). Olmsted (1966, 1969) studied mafic intrusive masses, and Katzman (1968) described a granitic mass near Mellen, Wis. Hubbard (1968) proposed alternative interpretations of stratigraphy and structure, as will be mentioned later. Felmlee (1970) interpreted relations near Mellen to indicate that lower Keweenawan strata lie with structural conformity but stratigraphic disconformity upon Animikean strata.

Geologic, magnetic, and gravity data concerning the Keweenawan area and the Precambrian rocks in other parts of Wisconsin have been compiled from many sources and interpreted by Dutton and Bradley (1970).

¹⁰⁻ The Wisconsin Geological and Natural History Survey series of township maps and reports are based on the work of field parties in the Keweenawan area during the period 1922 to 1930. Along traverses a half mile apart, outcrops were mapped, the lithology was described, specimens were taken which are still available, and magnetic dip-needle observations were made. These materials were the basis for the selection of the locations for sampling (fig. 1).

General geology

The area of Keweenawan rocks in northwestern Wisconsin is geologically divided into northern and southern parts underlain by some lava of lower Keweenawan age and by much lava and some conglomerate of middle Keweenawan age; a central part is underlain by sediments of upper Keweenawan age or younger (fig. 1). The general structure is the northeast-plunging Ashland or Lake Superior syncline. The northern limit of the area and undetermined amounts of the western part of the southern limit may be reverse faults or possibly unconformities along which rocks of Keweenawan age are adjacent to those of later Keweenawan or Cambrian age. The eastern part of the southern limit is at the conformable, unconformable, or fault contact mainly with northdipping older rocks of Animikie age in the adjacent Gogebic iron district.

The inferred areal extent of the lavas is based mainly on the distribution and trend of magnetic anomalies related to a thick sequence of massive fine- to medium-grained intermediate and felsic flows with associated conglomerate of probably minor amount. Except locally, outcrops are small and scattered; they are estimated to constitute 5 percent or less of the area in most sectional units of land but are

 $\mathbf{2}$

U S GOVERNMENT FRINTING OFFICE: 1959 O - 511171 867-160

2

3

4

6

7

8

o

11

12

13

14

 1ϵ

17

18

19

21

22

23

24

25

at least 25 percent of the area in several sections. Outcrops are scarce or absent within the area in which copper occurrences have been reported in 8 of the 22 townships or parts of townships in the northern part and in 17 of the 45 townships or parts of townships in the southern part.

The inferred areal extent of upper Keweenawan strata in the central part of the area is based on a few outcrops at the northern and southern limits and mainly on the absence of magnetic anomalies comparable to those in areas underlain by lavas. Exploration by drill-ሻ ---ing has confirmed the extent of the sedimentary sequence under part of the area.

Rocks of Keweenawan age in the Lake Superior region have been studied by Hubbard (1968); he proposed that the lavas in Michigan constitute two distinct subdivisions which have been recognized in Wisconsin and whose distribution has been partly determined by reconnaissance. The relationship of the other Keweenawan volcanic rocks of Wisconsin to these is uncertain. He further proposed that the syncline of Keweenawan rocks is bounded on the south by an unconform-10 ity rather than a reverse fault as proposed by Aldrich (1929); the north limit of the syncline may also be an unconformity (H.A. Hubbard, oral commun., 1969).

Copper in the southern part of the Keweenawan area

The southern part of the copper-containing area is in the south limb of the Ashland syncline that continues from Michigan across Wisconsin and into Minnesota; the Wisconsin part is about 10 miles 15---! wide and 100 miles long. This part is discussed first in accordance with the sample numbers in tables 1 and 2--progressively north by townships, west by ranges, and then by section number.

Samples 1 through 23 are from the lava sequence in the southwestern part for which no specific geologic report or map exists. Material selected from seven sites where copper minerals had been reported contained 0.012 to 0.18 percent copper (table 1). Samples from 16 sites where no copper had been reported or was seen at the time of sampling contained 0.007 to 0.020 percent copper. Semi-quantitative 20~ analyses of all samples are shown in table 2.

Samples 24 through 50 are from the middle section; the geology of that section has been shown by Grant (1901, pl. 13) and Aldrich (1929, pl. 1). The flows dip 30°-40°NW, and several interflow conglomerates are in the upper part of the lava sequence, which is overlain by sandstone, shale, and conglomerate.

D. S. GOVERNMENT ERLETING OFFICE: 13-9 0 - 511171

Grant (1901) gives accounts of three early explorations at the Mudge, Weyerhauser, and Montrose localities. (1) The Mudge location is in NE¹ and SE¹ sec. 5, T.42N., R.10W. According to Grant (p. 55), some copper was found in the NE¹ in epidotized and brecciated rock by stripping and shallow trenching in 1900. Copper was found at several places in the SE¹ along and on both sides of the contact of a thin conglomerate and overlying flow. (2) The Weyerhauser location is in the NW $\frac{1}{2}$ SE $\frac{1}{2}$ sec. 12, T.43N., R.10W. The exploratory work in 1900 described by Grant (p. 55-57) consisted of two pits, 40 and 60 feet deep, and some trenches. Copper was present in a series of fractured and epidotized amygdaloidal diabase flows. Several masses weighed 1 to 3 pounds each; the largest weighed 7 pounds. Smith (1947) reported that extensive exploration began about 1906, and the length of 55 diamond-drill holes totaled almost 20,000 feet. Three shafts were sunk, and 1,950 feet of workings were excavated. A small mill was built to evaluate the material being explored, but work stopped in 1914. Smith (1947) described the pertinent features of this area and the examination of it by the U.S. Bureau of Mines and U.S. Geological Survey in 1944-45. A shaft and related workings were dewatered; 16 samples were taken from the first level at a vertical depth of about 90 feet, 5 samples from the second level about 40 feet deeper, and 1 sample from the fourth level at a depth of 225 feet. It is reported that: "Within the area examined native copper occurs sporadically as irregular grains and small masses in the more fragmental portions of the amygdaloid. The fragmental portions of the amygdaloid are quite erratic in occurence. The percentage of copper in the rock is low" (Smith, 1947, p. 6). The copper content of 20 samples that were analyzed ranged from 0.003 to 0.959 percent: 8 samples ranged from 0.003 to 0.090 percent copper, 11 samples from 0.114 to 0.500 percent, and 1 sample had 0.959 percent. (3) The Montrose location is in the NW_{4}^{1} NW $_{4}^{1}$ sec. 12, T.44N., R.9W. Grant (1901, p. 58-59) presented a sketch map and section showing the location of outcrops and test pits and the related inferred geology. Some copper was found in and outside of amygdules in epidotized diabase, especially in brecciated rock, in a shaft reported to be 87 feet deep. A 15-foot drift in conglomerate at the bottom of a pit 80 feet deep was reported to have contained considerable copper.

1

2

З

4

6

7

8

9

11

12

13

14

16

17

18

19

21

22

23

24

25

20-

15---

10--

5 -

Grant (1901, pl. 13) showed the location of outcrops and copper occurrences and the areal geology in part of the area mapped later by Aldrich but also showed that the lava sequence continued 9 miles farther southwest. Five of the 10 copper occurrences indicated are in or adjacent to the only conglomerate layer shown, which is probably at or near the northern limit of the middle section of the southern area. This part of the area is so poorly accessible that the occurrences of copper were not sampled.

The map of the middle section of the southern part of the Keweenawan area by Aldrich shows the location and general lithology

> U.S. GOVERNMENT FRINTING OFFRE: 1912 O = 411171 057-12

2

3

4

7

8

of outcrops and also the location and classification, as metallic or sulfide, of occurrences of copper as recorded in field notebooks of the mineral land classification by the Wisconsin Geological Survey. Samples 24 through 30 are from lava in the southwestern part of the area shown by Aldrich. Sample 24 contained 0.74 percent copper but was probably not representative material, as indicated by associated sample 25 with 0.029 percent copper. Samples 27 and 29 with visible copper minerals contained 0.41 to 0.69 percent copper, nearby samples 28 and 30 without visible copper minerals contained 0.22 to 0.31 percent copper, and sample 26 of presumably unmineralized lava con-5tained 0.01 percent copper. Sample 46 is from lava in about the same stratigraphic position as those just discussed and contained 0.0045 percent copper. Samples 47 and 48 are from conglomerate between the two preceding localities; mineralized rock contained 0.14 percent copper, and rock with no visible copper minerals contained 0.014 percent copper.

9 Other occurrences that are lower in the lava sequence, in conglomerate, and in younger gabbro are south of but near the fault or 10unconformity Most are indicated as sulfide, but azurite and some malachite are now most evident. Some explorations by test pits in NW_{1}^{1} 11 NW1, sec. 6, T.44N., R.5W., NE1 NW1 sec. 2, T.44N., R.6W., and NE1 SE1 sec. 15, T.44N., R.9W., are described in the township reports of the 12 mineral lands survey. Samples 31 through 45, and 49 and 50 (fig. 1) are from these occurrences and test pits. Samples 31 and 32 are mainly 13 material selected to give data about presumably unmineralized lava and contained 0.023 to 0.37 percent copper; samples 34 and 35 were slightly 14 mineralized lava that had 0.081 to 0.15 percent copper; and samples 33 and 36 (1.05 and 6.05 percent copper, respectively) are from the same 15-general locality and contained visible minerals which is rare. Sample 37 was gabbro and contained only 0.033 percent copper. Samples 38-40, 16 44-45, and 49-50 are from the lava sequence: mineralized rock contained 0.14 to 0.52 percent copper, associated rock contained 0.074 to 0.21 .17 percent copper, and material collected as presumably unmineralized lava contained 0.034 percent copper. Conglomerate in samples 41-43 18 contained 0.008 to 0.76 percent copper. An analysis of one sample taken from 660 feet across the strike of the conglomerate in sec. 11, 19 T.44N., R.6W, was reported (Wisconsin Geological Survey, unpub. data) as 0.033 percent copper, 0.36 ounce of silver per ton, and 0.004 ounce 20~ of gold per ton. An analysis of another sample from the above locality was reported as 0.59 percent copper, 1.74 ounces of silver per ton, 21 and a trace of gold.

22

Copper in the northern part of the Keweenawan area

The northern part of the area (fig. 1) is 2 to 30 miles wide and

23

24 25~ 50 miles long.

U.S. GOVERN VENT FRINTING OFFICE: 17:0 C - VITTI 767-11

Samples 51 through 54 are from along roads in the southwestern part of Douglas County and were collected because fresh presumably unmineralized lava was readily accessible. The copper content ranges from 0.005 to 0.012 percent.

7-1401

1

2

3

4

7

8

q

15 -

16

17

18

19

21

22

23

24

25

Plate 7 in the report by Grant (1901) is a geologic map of a 15-mile southwestern segment of the southern edge of the northern area underlain by lavas of middle Keweenawan age; a narrow strip of sedimentary rocks of upper Keweenawan age to the south is also shown. The lavas and sediments dip southeast 12° to 18° and 8° to 15°, respectively. Six of the nine occurrences of copper minerals shown on Grant's plate 7 are at or within a half mile of the southern limit of the lavas in T.43N., R.13 and 14W. Four of these occurrences were not feasibly accessible, and another one could not be found; sample number 55 is from the sixth site, but the very small copper content (0.0043 percent) suggests that representative mineralized material was probably not collected.

Notes of the mineral land classification by the Wisconsin Geological Survey also refer to "particles of copper" at 22 locations 10 in a tract $5\frac{1}{2}$ miles long and within $1\frac{1}{2}$ miles of the upper limits of the lava sequence in T.44N., R.13W. The field notes also report 11 "specks of copper" in drill core from a hole in sec. 6, T.43N., R.12W., but no occurrences of copper minerals in outcrops in this section are 12 mentioned. Analyses of samples 55 through 58 from lava at or near the 13 reported occurrences of copper minerals along the southern edge of the northern area are given in table 1. The copper content ranges from 0.0024 to 0.0075 percent, so the adequacy of sampling or the validity 14 of the reported presence of copper is questioned.

Plates 8 and 9 in the report by Grant (1901) are geologic maps of the western 75 percent of the northern 3 miles of the northern area underlain by the lava sequence. Copper minerals are indicated at 24 localities.

The township maps compiled from data of the mineral land survey indicate 49 reported copper occurrences in 25 sections; 22 of the reported occurrences are in eight sections in T.47N., R.13W. The outcrops in this township are parallel ridges of south-dipping massive diabase that are probably separated by the less massive part of flows. Locally amygdaloids that contain sulfides are common to abundant along the southern part of outcrops, and the best potential areas presumably underlie the covered strips. Comparable but less obvious relations may exist in other areas containing outcrops of the lava sequence.

Grant gives brief descriptions of nine explorations in the "Douglas Range," that is, the north part of the northern area of Keweenawan lavas. (1) The North Wisconsin or Chippewa location is in

> U. S. GOVERNMENT FRINTING OFFICE: 1359 0 - 511171 867-300

the SW_{4}^{1} sec. 3 and NW_{4}^{1} sec. 10, T.47N., R.12W., but little work had 1 been done and little copper was seen at the time of Grant's visit. Holliday (1955) reports that by 1901 a shaft had been sunk to a depth 2 of 200 feet, and 1,532 feet of horizontal workings had been excavated. Eight samples from near and in the mine had been reported to contain 3 \$18.68 to \$27.86 per ton in gold, silver, copper, and nickel. The shaft was dewatered and repaired in 1953 by the U.S. Bureau of Mines in order to appraise the potential of this locality, and 519 samples of 25 pounds each from 1,814 feet of workings at a depth of 171 feet 5 were examined. Copper was mainly in amygdaloidal parts of flows or near faults; associated minerals were quartz, calcite, prehnite, and epidote. The amount of copper was insufficient to warrant further investigation at that time. Most of the samples contained less than 7 0.01 percent copper, some had 0.03, and a very few had 0.05. Handsorted samples contained 0.155 to 0.504 percent copper, 0.0008 to 8 0.0033 percent nickel, 0.030 ounce of silver per ton, and 0.0001 to 0.0004 ounce of gold per ton. (2) The Starkweather location, also q known as the Edwards or Wisconsin mine, is in the NW1 NW1 sec. 2, T.47N., R.13W. Native copper and some malachite were in amygdules but more 10 commonly in veinlike cement of brecciated rock. (3) The Fond du Lac location is in the NE¹/₄ sec. 8, T.47N., R.13W. It was explored by two 11 shafts 60 and 80 feet deep and by several shallow pits and trenches. and considerable stripping. Grant (p. 36) states that "...the work 12 here resulted in an examination of a larger amount of rock in which copper might occur than at any other of the recent explorations on the 13 Douglas Range." One occurrence of copper was irregularly distributed in a veinlike mass that appeared to be igneous rock intruded along a 14 fissure, and copper also occurs in the amygdaloidal upper part of a flow. (4) The Amnicon location is in the NW_4^1 sec. 11, T.47N., R.13W. 15 where chalcopyrite, chalcocite, and malachite were in a vein from 2 to 18 inches wide and in amygdules at several adjacent outcrops. (5) The 16 Copper Creek location is in the SW¹/₄ sec. 14 and SE¹/₄ sec. 15, T.47N., R.14W. Copper was in amygdules at the top of some flows and in vein 17 material--quartz, calcite, and prehnite--of breccia between flows. The occurrences were seen in outcrops, pits, and a trench. (6) The 18 Culligan location is in the SW¹/₄ sec. 29, and SE¹/₄ sec. 30 and NE¹/₄ sec. 31, T.47N., R.14W. Malachite was in breccia penetrated by test pits. 19 Occurrences of native copper with quartz in amygdules and small veins in an exposure, a trench, and pits were sufficiently encouraging that 20 -Grant thought they should be prospected more fully. No samples were obtained in 1968 from this mineralized area because of poor accessi-11 bility. (7) The Percival location is in the SW_{4}^{1} NE¹/₄ sec. 27, T.48N., R.10W. A shaft about 90 feet deep penetrated an amygdaloidal rock 22 in which epidotized areas contained copper in the amygdules and cracks and as disseminated particles. (8) The Astor location is in the NW_{4}^{1} 23 sec. 28 and NE¹/₄ sec. 29, T.48N., R.10W.; chalcopyrite was present in a few exposures of amygdaloidal rock and shallow pits. (9) The Catlin 24 location, in the SE¹/₄ sec. 34, T.48N., R.13W., had a small amount of exploration, but no copper was reported by Grant. 25

3-1401

U. S. GOVERNMENT FRINTING OFFICE: 1959 O - 511171 867-12

Samples 59 through 69 (fig. 1) are from selected occurrences of reported copper minerals in lava in the northern part of the northern limb of the Ashland syncline. The copper content of the samples ranged from 0.016 to 0.050 percent as shown in table 1. Rock presumed to be unmineralized contained 0.0060 to 0.018 percent copper.

160

1

2

3

5 --

6

7

8

٥

11

12

13

14

16

17

18

19

21

22

23

24

25

20 -

10 -

Copper in the central part of the Keweenawan area

The central part of the area of Keweenawan rocks in northwestern Wisconsin is underlain by a thick sequence of very sparingly exposed sediments of upper Keweenawan age. A thin unit, the Nonesuch Shale, contains copper locally. This formation contains sufficient copper in northwestern Michigan to be ore grade at the White Pine mine; very fine chalcocite (Cu₂S) is in two extensive mineralized siltstone units that contain 1 to 3 percent copper, but the overall grade of mined ore is about 1 percent. The Nonesuch Shale in Wisconsin was explored about 1960 by almost 50 drill holes in adjacent parts of Bayfield, Douglas, and Washburn Counties. The mineralized areas were too small or were too low in copper content for development; neither mineralized rock nor the Nonesuch Shale itself is continuous within the area explored.

Summary

Lavas and conglomerates that contain valuable deposits of copper in Michigan extend southwestward into Wisconsin, where further appraisal of the potential may be advisable even though former explorations were not commercially successful and reconnaissance sampling was not as significant as anticipated.

> Samples from 24 reported occurrences of copper contained 0.0075 to 0.69 percent copper; 10 of the 24 samples contained more than 0.10 percent.

Adjacent rock associated with seven samples but having no visible copper minerals ranged from 0.016 to 0.074 percent copper.

Samples from 33 localities presumed to be unmineralized, inasmuch as no copper minerals had been reported or were visible as material was being collected, contained 0.0005 to 0.17 percent copper. The median value was 0.01 percent copper; about half the lower group was clustered at 0.005 to 0.008 percent, and about half the upper group was at 0.014 to 0.018 percent.

The sites sampled and presumably those explored were selected on the basis of readily visible occurrences or reported occurrences of

> U.S. GOVERNMENT FRINTING OFFICE: 19*9 O ~ 511171 867-100

copper minerals, but the sites may not be indicative of or representa-tive of the full potentialities of the area. A more adequate appraisal will require a comprehensive geologic and geophysical study of the stratigraphic and structural controls that influenced localization of the minerals. 5 -10-15÷ 20-U.S. GOVERNMENT FRINTING OFFICE: 1959 O - 511171

.

867 IS

1	References
2	Aldrich, H. R., 1929, Geology of the Gogebic iron range of Wisconsin:
3	Wisconsin Geol. and Nat. History Survey Bull. 71, 279 p.
4	Chamberlain, T. C., Irving, R. D., Pumpelly, Raphael, and Sweet, E. T.,
5	1880, in Geology of Wisconsin 1873-1879: Wisconsin Geol. Survey,
6	v. 3, p. 24-49, 167-210, 336-362, and 391-428.
7	Dutton, C. E., and Bradley, R. E., 1970, Lithologic, geophysical, and
8	mineral commodity maps of Precambrian of Wisconsin: U.S. Geol.
9	Survey Misc. Geol. Inv. Map 1-631.
10 -	Felmlee, J. K., 1970, Geologic structure along Huronian-Keweenawan
11	contact near Mellen, Wisconsin: Madison, Wis., Univ. Wisconsin,
12	M.A. thesis, 91 p.
13	Grant, U. S., 1901, Preliminary report on the copper-bearing rocks of
14	Douglas County, Wisconsin: Wisconsin Geol. and Nat. History
15—	Survey, Bull. 6, 83 p.
16	Holliday, R. W., 1955, Investigation of Chippewa copper-nickel prospect
17	near Rockmont, Douglas County, Wisconsin: U.S. Bur. of Mines
18	Rept. Inv. 5144, 11 p.
19	Hubbard, H. A., 1968, Stratigraphic relations of some Keweenawan rocks
20	of Michigan and Wisconsin [abs], <u>in</u> Inst. Lake Superior Geology,
21	14th Ann., Superior, Wis., Wisconsin State UnivSuperior and
27	Minnesota Geol. Survey, p. 35-36.
23	Irving, R. D., 1883, The copper-bearing rocks of Lake Superior: U.S.
24	Geol. Survey Mon. 5, 464 p.
25 –	

(> GOVERNMENT (RINTING OFFICE: 1919 O - 511171 467-10

1	Katzman, M. M., 1968, Progress of investigation of the Mellen Granite,
2	Ashland County, Wisconsin (abs): <u>in</u> Inst. Lake Superior Geology,
3	14th Ann. Superior Wis., Wisconsin State UnivSuperior and
4	Minnesota Geol. Survey, p. 51.
5	Leighton, M. W., 1954, Petrogenesis of a gabbro-granophyre complex in
6	northern Wisconsin: Geol. Soc. America Bull., v. 65, No. 5,
7	p. 401-442.
8	Olmsted, J. F., 1966, Petrology of differentiated anorthositic intrusion
9	in northwestern Wisconsin: East Lansing, Mich., Michigan State
10-	Univ., Ph.D. thesis, 178 p.
• •	1969, Petrology of the Rearing Pond intrustion, Mellen, Wisconsin
1	
	(abs): in Inst. Lake Superior Geology, 15th Ann., Oshkosh, Wis.,
2	(abs): <u>in</u> Inst. Lake Superior Geology, 15th Ann., Oshkosh, Wis., Wisconsin State UnivOshkosh. p. 29.
.2	Wisconsin State UnivOshkosh, p. 29.
.2	Wisconsin State UnivOshkosh, p. 29. Smith, M. C., 1947, Copper deposits of Douglas County, Wisconsin:
2 3 4 15	Wisconsin State UnivOshkosh, p. 29.
2 4 15 6	Wisconsin State UnivOshkosh, p. 29. Smith, M. C., 1947, Copper deposits of Douglas County, Wisconsin:
2 3 4 15 6 7	Wisconsin State UnivOshkosh, p. 29. Smith, M. C., 1947, Copper deposits of Douglas County, Wisconsin:
2 3 15 6 7 8	Wisconsin State UnivOshkosh, p. 29. Smith, M. C., 1947, Copper deposits of Douglas County, Wisconsin:
2 4 15 7 8 9	Wisconsin State UnivOshkosh, p. 29. Smith, M. C., 1947, Copper deposits of Douglas County, Wisconsin:
2 3 4 15 6 7 8 9 20	Wisconsin State UnivOshkosh, p. 29. Smith, M. C., 1947, Copper deposits of Douglas County, Wisconsin:
2 4 15 6 7 8 9 20	Wisconsin State UnivOshkosh, p. 29. Smith, M. C., 1947, Copper deposits of Douglas County, Wisconsin:
2 4 15 6 7 8 9 20 21 2	Wisconsin State UnivOshkosh, p. 29. Smith, M. C., 1947, Copper deposits of Douglas County, Wisconsin:
2 3 4 15 6 7 8 9	Wisconsin State UnivOshkosh, p. 29. Smith, M. C., 1947, Copper deposits of Douglas County, Wisconsin:

9-1401

~								· · · · · · · · · · · · · · · · · · ·					
	1	Tab	1e 1 <u>Am</u>	ount of o	copper	in chip samples	s of Keweenaw	van rocks					
	2				<u>of Wisconsin</u>								
	3	[Copper	determin	ed by HN(D ₃ acid	boil-atomic al	osorption, by	J. A. Thomas,					
	4	Claude	Hoffman,	Jr., and	1 J. P.	Cahill, U.S. (Geol. Survey,	Denver, Colo.]					
	5—					Pe	ercent copper	,					
	б.			Location		in type	of material	sampled					
	7	Samp1e	Township	Range	Sectio	n Mineralized	Associated	Presumably					
	8	number	North	West		$rock^{1/2}$	rock	unmineralized					
	9						· · · · · · · · · · · · · · · · · · ·	rock					
	10	. 1	33	18	5			0.015					
	11	2	do	do	do			0.015					
	2	3	do	19	14			0.0005					
	13	- 4	35	18	4			0.0098					
	14	5	do	do	do			0.008					
	15—	6	do	do	9.			0.011					
	16	7	do	do	đo			0.018					
	17	8	do	do	do	-		0.014					
	18	9	do	do	do			0.007					
	19	10	36	18	10			<u>2</u> /0.007					
	20	11	37	16	7	0.021							
	21	12	do	do	9	0.18							
	22	13	đo	do	13	· .		0.014					
	23	14	do	do	14	0.14	•						
	24	15	do	do	18	0.012							
	25	16	do	do	do		0.042						

U.S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171 867-100

2				of Wisco	of WisconsinContinued								
3		•			Pe	rcent copper	· · ·						
4		I	ocation		in type	of material	sampled						
5	Sample	Township	Range	Section	Mineralized	Associated	Presumably						
6	number	North	West		$rock^{1/2}$	rock	unmineralize						
7		: •			<u></u>		rock						
8	17	do	do	23	0.11	• •							
9	18	do	do	25 - 36	0.12								
10-	19	do	do	28			0.009						
1	20	37	17	30	· · ·		0.008						
2	21	do	do	do			0.011						
3	22	do	do	31			0.012						
4	23	do	18	36			0.020						
15	24	43	9	16	<u>3</u> /0.74								
5.	25	do	do	do		$\frac{4}{0.029}$							
7	26	do	do	do			0.01						
3	27	do	10	12	0.41								
€	28	do	do	do		0.22							
20-	29	do	do	do	0.69								
1	30	do	do	do		0.31							
<u>p</u>	31	44	5	6			0.023						
3	32	do	do	do			0.037						
	33	do	do	do	$\frac{3}{1.05}$								
25	34	do	do	do			0.15						

1401 3.

U. S GOVERNMENT PRINTING OFFICE: 1959 0 - 511171 861-100

			·	<u>of Wiscon</u>	<u>sin</u> Continue	d	
					Ре	rcent copper	
			Locatio	n	in type	of material	sampled
5 —	Sample	Township	Range	Section	Mineralized	Associated	Presumably
	number	North	West		$rock^{1/2}$	rock	unmineralized
			·				rock
	35	do	do	do			0.081
	36	do	do	đo	<u>5</u> /6.05		
)	37	44	6	1			gb 0.033
	38	do	do	2	0.19		
	39	44	6	2		0.074	
	40	do	do	4			0.034
	41	do	do	10			cg 0.008
5	42	đo	đo	11	<u>3</u>	/cg_0.76	
	43	do	do	do			cg 0.17
	44	44	7	29	0.52		
	45	do	do	do		0.21	
	46	44	9	12			0.0045
-	47	do	do	28	cg 0.14		
	48	do	do	do	· · ·	cg 0.014	
	49	45	6	36	0.14		
	50	do	do	do		0.016	
	51	43	14	5-6	0.0080		
)	52	do	do	6	÷	:	0.0050

 $I=S:\; \text{GOVERN}\; \text{MFAT} \; \; i \; \text{RIN FING}\; \; \text{OFFICE}\; : 1959\;\; \text{O} = \texttt{F11171} \\ \text{F67-Id} \\ \text{F67-Id} \\ \end{array}$

	Та	bie I <u>Ап</u>	· ·		<u>n chip sample</u>		wan rocks		
	<u>of Wisconsin</u> Continued								
		۰.				rcent copper			
			Locatio	n	in type	of material	sampled		
5	Sample	Township	Range	Section	Mineralized	Associated	Presumab l y		
	number	Nor th	West		$rock^{\underline{1}}$	rock	unmineralize		
			<u> </u>				rock		
	53	do	do	9	0.012				
	54	do	do	do			0.0050		
10	55	44	13	14	·		0.0043		
	56	do	do	16	0.0075	· · ·			
	57	do	do	23		· · · · ·	0.0050		
	58	44	13	23			0.0024		
	59	47	12	3	0.016				
5-	60	do	do	6	0.018	 			
	61	do	13	1	0.027				
	62	do	do	do	0.020		.'		
	63	do	do	do	0.041				
	64	do	do	do	•		0.0060		
0	65	do	do	do	0.050				
	66	do	do	17	0.035				
	67	48	10	24			0.018		
	68	do	do	30	0.025				
	69	do	12	29	0.032				
5									

and the second

B. S. GOVERNMENT TRIMING OFFICE: 1959 O - 511171 857-136

			• :
	1	Table 1Amount of copper in chip samples of Keweenawan rocks	· .
•	2	of WisconsinContinued	
	.3	$\underline{1}$ / Samples were believed to contain visible copper minerals in	
	4	diabase, except as noted: gb, gabbro; cg, conglomerate.	
	£	2/ Grab sample from dump of shallow exploratory shaft.	
	6	$\underline{3}$ / Mineralized joint surface and probably not sufficient adjacent	
	7	rock taken to be representative sample.	
·	8	4/ From same joint surface as sample 24, but no copper mineralization	L
	9	visible.	
	10 -	5/ Fine-grained mafic rock containing metallic copper along joints.	
	11	Only one fragment on test pit dump composed of diabase and conglomerate.	
	12		
	13		
	14		
	15		
	16		•
	17.		
	18		
	19		
	20		
	21		·
	22		
	23		
	24		
	25 -		

		<u> </u>			Semiqua	atitative s	wet rographie			·•		
<u>ample</u>	l/	(p	ercent)	Ca	Ti	Mrt -	Ba	Be	(<u>unu)</u> Go	Cr	<u> </u>	le
1 2 3 4 5	0 015 0,015 0,005 0,001 0 008	10 10 10 10 10	2 3 1 5 5 5	5 7 7 7 5	1 1 2 1 1	700 700 500 1,000 1,000	150 150 500 70 300	 1 	30 50 50 50 50	100 150 100 150 150	300 200 100 150 150	31
6 7 8 9 0	0 011 0.018 0.014 0.007 0.007	10 10 10 10 10	5 5 5 2 5	7 5 7 7 5	1 2 1 1 1	1,000 1,000 1,000 1,000 1,000	200 500 150 150 150		50 50 50 50 50	150 150 150 100 150	200 300 200 150 150	
1 2 3 4 5	0.021 0.018 0.014 0.014 0.014 0.042	10 10 10 10 10	2 5 2 2 5	5 5 5 5 5) - 1 1 1 1 1	1,000 1,000 500 1,000 1,000	150 200 200 150 150		50 50 50 50 50	100 150 150 100 150	300 200 300 700	
6 7 8 9 0	0.020 0.011 0.012 0.019 0.008	10 10 10 10 10	2 5 2 5 5	555	1 1 2 1 1	1,000 1,000 1,000 700 1,000	200 100 500 150 300	1	50 50 50 50 50	100 200 150 100 100	200 200 200 100 200	7
1 2 3 · · 4 5	0.011 0.012 0.023 0.74 0.029	10 10 10 10	5 5 5 5 5	7 5 10 10	1 - 1 1 1 1	1,000 1,000 1,000 700 700	300 300 200 150 150		50 50 50 50 50	150 150 100 200 200	200 200 300 7,000 500	
6 7 . 8 9	0.01 0.041 0.022 0.69 0.031	10 10 10 10	5 10 1 5 5 5	7 5 10+ 2 7	1 07 1.	700 1,000 1,000 500 1,000	150 150 15 70 150		50 50 20 50 50	200 200 200 150	200 500 150 7_000 500	
1 2 3 4 5	0 023 0 37 1 05 0 15 0 081	10 10 7 10 5	5 5 3 5 1	5 3 5 5 5	2 2 1 5 2 0 7	1,000 1,000 1,000 1,000 500	200 500 700 300 700	1 1 1 1.5	50 50 30 50 20	100 70 50 70 30	300 5,000 10,000 1,000 500	3) 50 70 30 100
5 7 3 9	6 05 0.033 0.19 0.074 0 034	10 10 10 10 10	5 2 5 5 1 5	7 7 5 5	2 3 2 2 1	1,000 1,000 1,000 1,000 1,000	100 150 500 700 200	1 1 1 1	50 50 50 50 30	70 100 50 50 70	70.000 300 2,000 1,000 300	3) 5(3(
L 2 3	0.001 0.76 0.17 0.52 0.21	10 7 7 10 10	1 5 1 5 0 7 2 2	1.5 1 1 5 5	1 1 2 2	700 500 500 1,000 1,000	500 1,500 1,500 200 300	2 2 1 1	20 30 20 50 50	50 50 100 70	15 7,000 2,000 7,000 3,000	7(7(10(3(
5 7 9 9	0 004 0.14 0.014 0.14 0.016	10 3 3 10 10	1 5 0.7 0.7 5 5	5 1 1.5 7 5	1.5 0.5 0.5 2 2	700 500 500 700 700	500 1,000 1,000 150 500	3 3 1	50 10 10 50 50	20 30 30 200 150	100 1 500 200 2,000 300	30 300 150 50 50
2 3 4	0,008 0,004 0,012 0,005 0,004	10 10 10 10	2 5 5 7 5	5 7 7 7 7	1.5 1 1 1 1	700 700 500 500 500	500 150 200 150 300	1	50 50 50 50 50	30 200 200 200 150	150 100 150 100 70	50
, , , ,	0.007 0.005 0.002 0.016 0.018	7 10 10 10 10	7 7 5 2 2	7 7 7 3 7	0.5 1 1 2 1 5	500 500 500 1,000 700	150 150 500 500 300	 1 1	50 50 50 50 50	150 200 150 100 200	100 150 50 200 300	 50 30
	0 027 0.020 0.041 0.006 0.050	10 10 10+ 10 10	2 2 2 2	5 5 3 3	15 15 15 1 15	700 700 700 700 1,000	300 150 200 150 500	1 1 1	70 50 50 50 50	150 100 100 150 .2	500 300 500 100 500	50 50
	0 035 0 018 0 025 0 032	10+ 10 10	. 15 3 3 2	3 5 2 5	2 15 2 15	700 1.000 - 500 1,000	500 200 100 500	1 1 1	50 50 50 50	2 150 100 100	500 300 300 500	50 ~ 50

ast. --Semiquantitative analyses of chip samples from reported

1/ Copper, gold nickel, and silver analyses were made by stomic absorption by J P Cabill, Claude Hoffman, Jr., and J. A Thomas. Six samples had 2 to 5 ppm silver, and others had less than 2 ppm.

copper-hearing sites and adjacent rocks of Kewcenawan age in Missianin

		nu 4	us-tont	E fanaly.	trograph (ppn)	ive aper	quantitati	Se auf			
Rock type	Zr	· · Y	v	SR	Sc.	РЪ	NI ^{1/}	Nİ	Nb	le	Samp
Basaltic and andesitic flows excenses noted. Texture is commonly asphanitic or ophilic, and amygdaloids are present locally	70 100 200 100 100	20 30 70 30 30	200 300 500 300 300	200 200 500 300 200	20 30 50 30 30	10	135 150 67 138 165	100 150 50 100 100	 т.		01 02 03 04
	100 100 100 100	30 30 30 50 30	500 500 300 500 300	500 300 300 200 500	30 30 30 30 30		152 138 165 75 153	100 100 100 70 100			06 07 08 09 10
	150 100 100 100 100	50 30 30 20 30	500 200 300 500 500	300 300 200 300 300	30 30 30 20 30		100 165 155 155 112	100 150 100 100 100			11 12 13 14 15
	100 100 300 150 100	30 30 100 50 30	500 300 300 500 300	500 200 200 200 300	30 30 30 30 30		109 150 107 95 124	100 150 100 70 100	10		16 17 18 19 20
	70 100 70 70 70	20 30 30 20 20	300 500 300 200 200	300 300 300 500 500	30 30 30 30 30 30		208 134 143 178 179	200 150 100 150 150			21 22 23 24 25
	70 70 70 100	30 20 20 30 30	500 300 700 500 700	500 200 700 150 500	30 30 30 20 30		181 222 187 100 190	100 200 150 150 150			26 27 28 29
Conglomerate	200 200 200 200 700	70 70 70 70 100	200 300 200 200 150	200 200 200 150 300	30 20 20 20 10	10 10 15	140 105 72 143 55	100 70 50 70 20	15 15 20 10 30		12
Cabbro	200 150 200 200 150	. 50 70 70 70 50	200 500 300 300 300	200 200 150 150 150	20 50 30 30 30	10 	135 70 113 113 65	100 70 70 70 20	10 10 10 15 10		6 7 8 9
Conglomerate No 2 No	300 500 500 200 200	70- 70 100 70 70	200 200 200 300 300	150 100 150 150 200	20 20 20 50	10 10 1. 10	60 63 40 55 49	70 30 20 30 30	20 30 30 10 1		1
Conglomerate. Do	200 500 500 200 200	50 200 150 70 70	500 100 100 300 300	300 150 150 300 300	30 10 10 30 30	10 1 L	60 33 33 201 155	50 20 20 150 100	70 70 10 10		6 7 8 9
	200 70 70 70 70	50 20 20 20 20	500 300 300 200 300	300 500 300 300 300	30 30 30 30 30	10 	70 190 170 225 190	70 150 150 150 100			1 3 4 5
Cabbro.	30 70 70 200 150	15 20 20 70 50	200 .300 300 200 300	200 200 300 150 200	30 30 30 30 30	10	235 250 230 55 105	150 150 150 50 70	 10 L		6 7 8 9 0
	150 150 200 150 150	50 50 30 50	500 300 500 500 500	300 200 300 150 150	30 30 50 30 30	 	110 90 60 85 50	100 50 50 50 10	L 10 10 10		1 . 2 3 4 5
	200 100 200 200	70 50 70 70	300 300 300 300	150 200 150 150	30 30 30 30	10 10 15 15	25 110 50 60	10 70 30 50	10 10 10		6 7 8

less than 0.05 ppm.

1

1

Table 3. -- Name and location of explorations

in Keweenawan rocks of Wisconsin

ł	Name of exploration	Location					
ſ		Township North	Range West	Section	Quarters		
5	Mudge	42	10	5	NEŁ		
					SEŁ		
	Weyerhauser	43	10	12	NWŁSEŁ		
н	Test pits	44	5	6	NWŁNWŁ		
ų.	Test pits	44	6	2	NEŻNWŻ		
10	Montrose	44	9	12	NWŻNWŻ		
1)	Test pits	44	9	15	NEZSEZ		
1:	North Wisconsin or Chippewa	47	»12	3	SW		
				10	NW		
£ \$	Starkweather or Edwards or Wisconsin	47	13	2	NWŁNWŁ		
1	Fond du Lac	47	13	8	NE		
11	Amnicon	47	13	11	NW		
1	Copper Creek	47	14	14	SW		
1.54				15	SE		
1	Culligan	47	14	29	SW		
- 1				30	SE		
1				31	NE		
	Percival	48	10	27	SWŁNEŁ		
	Astor	48	10	28	NW		
	Catlin	48	13	29 34	NE SE		
1		- 1		L s ·			