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Windblown deposits

Qa

Qlc

Qlb

Qlcb

Ql

Well-sorted Holocene and Pleistocene sand, silt, and mud. Deposited as overbank deposits in modern 
valleys. Cobble beds are uncommon, but can be found in river valleys where adjacent hillslopes are draped 
by colluvial deposits.

Colluvium
Qc

Angular, poorly sorted boulders, cobbles, sand, and silt. Deposited at the base and lower reaches of valley 
slopes from gravity-driven mass wasting, soil creep, and non-channelized overland flow. The unit tends to 
fine towards the valley bottoms, and can interfinger with alluvium. Thicknesses are generally in excess of 3 
m (10 ft), but rapid changes are likely due to an uneven, underlying bedrock surface.

Ql – Undivided loess. Windblown deposits of very �ne sand, silt, and clay. May include parts of the Roxana 
and Peoria Members of the Kieler Formation, a loess formation. Loess is present on upland surfaces, and is 

 generally thicker on broad plateaus than narrow ridges. Qlc – Undivided loess over carbonate rocks. The 
Rountree Formation, formed from the surface weathering of carbonate rocks, is probably discontinuously 
present beneath the loess. Qlb – Undivided loess over siliciclastic bedrock. Qlcb – Undivided loess over 
mixed carbonate and siliciclastic bedrock. 

Galena Formation 

Paleozoic bedrock units were mapped where bedrock is estimated to be within 3 m (10 ft) of land surface. Within 
Paleozoic units, outcrops are generally discontinuous at the surface. Stratigraphic units use the classi�cation scheme 
of Agnew and others (1956), which has di�erent divisions for the Sinnipee Group than Wisconsin Geological and 
Natural History Survey (2011). Unit descriptions generally follow Stewart and others (2022a). Carbonate units follow 
the classi�cation of Dunham (1962).

Tan to gray, vuggy dolomite. Thin- to medium-bedded. The upper Galena Formation is composed of 
granular, sandy dolomite, but is not exposed in the map area. The lower approximately 36.5 m (120 ft) of 
the Galena Formation contains sandy dolomite with interbedded gray chert. Receptaculites is common in 
the lower Galena. At the surface, the dolomite often weathers into a distinctive honeycomb appearance. 
Honeycomb weathering is thought to result from preferred dissolution and weathering of Thalassinoides 
burrows (Dockal, 2021; Stewart and others, 2022b). Though the entire section is not exposed in the map 
area, the full thickness of the Galena Formation elsewhere ranges from approximately 70–76 m (230–250 
ft).

Og

Decorah Formation 
The Decorah Formation contains the upper Ion Member, the middle Guttenburg Member, and the basal 
Spechts Ferry Member. The Ion Member contains thin- to medium-bedded gray dolomitic mudstone and 
wackestone. Shale partings are common, and they de�ne bedsets in the �eld. The Guttenburg Member is 
composed of 0.5–10 cm (0.2–2.4 in) thick gray to tan mottled mudstone to wackestone with interbedded 
chocolate brown to gray shaley mudstone around 1 cm (0.4 in) thick. The Spechts Ferry Member contains 
green-blue laminated, �ssile shale with subordinate interbedded gray limestone and dolostone. The 
Spechts Ferry Member is around 0.6–0.9 m (2–3 ft) thick in the Stitzer and Montfort area, but thickens 
westward to around 2.6 m (8.5 ft) at the type section in Dubuque County, Iowa (Kay, 1929). The Decorah 
Formation contains abundant brachiopod fossils throughout. The Decorah Formation is around 9–12 m 
thick (30–40 ft). 
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Platteville Formation 
The Platteville Formation contains the upper Quimbys Mill Member, the middle McGregor Member, and the 
basal Pecatonica Member. The Quimbys Mill Member contains thin-bedded, fine-grained gray to brown 
mudstone. The mudstone fractures conchoidally, which helps distinguish the unit. Millimeter- to 
centimeter-thick brown shale partings and interbeds define bedsets. The McGregor Member contains thin-
bedded gray wackestone interbedded with dark gray, shaley mudstone. Bedding is wavy and mottled. 
Brachiopods are common. The Pecatonica Member is a tan to gray, thin- to medium-bedded dolomitic 
mudstone to wackestone. Bedding is typically tabular. The total thickness of the Platteville Formation is 
approximately 15 m (50 ft).
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Ancell Group 
The Ancell Group includes the Glenwood Formation and the St. Peter Formation. The Glenwood Formation 
is a light to dark green, �ssile shale 0.6-1 m thick. The underlying St. Peter Formation contains the upper 
Tonti Member and the basal Readstown Member. The Tonti member is a clean, tan to white, �ne- to 
medium-grained quartz arenite. Bedding ranges from thin to medium. Large cross-beds are common. Near 
the contact with the Glenwood, the Tonti is cemented with iron sul�des and carbonate. The Readstown 
Member is poorly exposed in the Stitzer and Montfort areas, but elsewhere it contains interbedded white to 
tan, �ne-grained quartz arenite and mottled, maroon to green shale. Soft-sediment deformation is 
common. The base of the Readstown forms an unconformity with the underlying Prairie du Chien Group. 
The thickness of the St. Peter Formation is variable, but the combined Ancell-Prairie du Chien thickness in 
southwest Wisconsin is around 82–98 m (270–320 ft) (Agnew and others, 1956).

Oa

Prairie du Chien Group 
The Prairie du Chien Group in the Stitzer and Montfort area is largely composed of the Oneota Formation. 
The Oneota Formation is generally a tan to gray, thin- to thick-bedded, �ne-grained dolostone. Vugs and 
chert are common. Fine-grained micrite and stromatolites occur locally. The base of the Prairie du Chien 
Group is not exposed in the map area.

Opc

MAP UNITS 

QUATERNARY 
Mapped where estimated thicknesses exceed 3 m (10 feet). Most Quaternary unit descriptions follow Stewart and 
others (2022a). Windblown deposit units were updated with input from E. Carson (WGNHS, oral commun., 2023).
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Geodatabase and cartography by Stephen Mauel and Eric Stewart

The map and cross sections are interpretations of the data available at the time of 
preparation. Every reasonable effort has been made to ensure that this interpretation 

conforms to sound scientific and cartographic principles; however, the map should not be 
used to guide site-specific decisions without verification. Proper use of the map is the sole 

responsibility of the user.

This geologic map was funded in part by the U.S. Geological Survey National 
Cooperative Geologic Mapping Program under Earth MRI award number 

G21AC10500-00, 2021. GIS files that accompany this map can be found at: https://
doi.org/10.54915/icay3440.
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INTRODUCTION
The Stitzer and Montfort 7.5-minute quadrangles are located in southwestern Wisconsin in the Driftless Area, a part of 
Wisconsin that was never glaciated. The landscape is composed of flat to gently undulating plateaus cut by steep 
stream and river valleys. Quaternary loess (windblown deposits) covers much of the upland surfaces.

The Stitzer and Montfort quadrangles are underlain by Ordovician siliciclastic and carbonate bedrock units that occur 
near the northern margin of the historic Upper Mississippi Valley lead (Pb) and zinc (Zn) mining district. The Upper 
Mississippi Valley district was the leading producer of lead in the United States from about 1830 to 1871 and was the 
fourth leading producer of zinc from 1906 to 1910 (Heyl and others, 1959). Mining production slowly declined in the 
20th century and finally ended in the district in 1978. Pb-Zn mines and Pb diggings occur in the western half of the 
Montfort quadrangle, but few occur within the Stitzer quadrangle. Paleozoic units in both quadrangles are folded into 
the regionally significant Mineral Point anticline, but historic prospects are not equally distributed along the structure.

Mapping was initiated to investigate the potential structural controls on Mississippi Valley Type Pb-Zn sulfide 
deposits in southwestern Wisconsin as part of the U.S. Geological Survey's Earth Mapping Resources Initiative (Earth 
MRI). The district’s Pb-Zn deposits have the potential to host base, precious, and industrial minerals critical to the 
nation’s infrastructure, including Pb, Zn, cobalt, germanium, copper, and high-calcium limestone. Mississippi Valley 
Type sulfide mineralization can also impact groundwater quality, as the same deposits that potentially host critical 
minerals have the potential to release metals and arsenic into groundwater wells. This map uses historic prospects 
and mines as a guide for identifying mineralized areas and uses changes in structural setting to assess structural 
control on mineralization.

The Montfort quadrangle was previously mapped by Carlson (1961), while the Stitzer quadrangle has not been 
mapped at 1:24,000 scale. This map includes both the western half of the Montfort quadrangle and the Stitzer 
quadrangle because a large exploratory drilling program was initiated in the southwestern corner of the Montfort 
quadrangle by New Jersey Zinc in the 1960s after publication of the Montfort map. The records from this drilling 
campaign were compiled into the unpublished Mineral Development Atlas, part of which is stored in the archives of 
the Wisconsin Geological and Natural History Survey. These records along with new and historic geologic mapping 
were used to produce a structure-contour map of the base of the Platteville Formation (fig. 1). Bedrock contacts and 
structural measurements from Carlson (1961) were digitized, compiled, and used in this map. Quaternary units were 
not mapped by Carlson (1961), and have been added to this map.
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STRUCTURE
Mineral Point anticline

The Mineral Point anticline is an asymmetric, north-vergent anticline with a maximum structural relief of approximately 
60 m (200 ft). The fold is a composite structure composed of overlapping to underlapping lateral segments. Along the 
steeply dipping north limb of the fold, isolated to dense webs of deformation bands occur in the St. Peter sandstone. 
The bands have signi�cantly lower porosity than the surrounding sandstone matrix. Bedrock fractures near the fold 
typically strike parallel or perpendicular to the fold axis, and have a vertical or sub-vertical dip. Fracturing appears to be 
more intense in places where bedding has a measurable dip.

The fold is interpreted to be a fault propagation fold. The asymmetry of the fold limbs and the correspondence 
between aeromagnetic basement anomalies and Paleozoic structure contours (Bremmer and others, in press) suggest 
reactivation of Precambrian faults in the Paleozoic induced folding in the cover sequence. Buried thrust faults likely 
exist in the Cambrian section at depth in the core of the Mineral Point anticline.

MINERALIZATION

Crow Branch area 

Historic prospects and mines near Crow Branch and adjacent areas are concentrated in a broad area that bounds the 
junction of three anticline-syncline pairs (�g. 1). Each of the fold segments is probably cored by a small thrust fault at 
depth. Thus, the junction zone between the folds overlies an area of strain accommodation between fault segments, 
known as a transfer zone or relay zone. Displacement vectors within relay zones can change rapidly, potentially 
resulting in heavy fracturing of rock and providing conduits for vertical �uid �ow (Fossen and Rotevatn, 2016).

Mines and prospects west of Crow Branch are uncommon even though the amplitude of the Mineral Point anticline is 
larger. There is a notable lack of historic mining prospects from Annaton to Stitzer. The cause of this change is unclear, 
but intense webs of deformation bands in sandstones and/or clay smearing along buried faults could both potentially 
reduce permeability and shift mineralizing �uids towards the relay zones.

Crow Branch mine

The Crow Branch mine was active from the 1830s until the 1880s (Carlson, 1961). Mines in this area produced lead ore 
from the Galena, Decorah, and Platteville formations. A roughly horizontal adit was dug that started near the top of the 
St. Peter Formation and passed into the Platteville Formation. The adit was connected to the surface by vertical shafts. 
The total production is not known with certainty, but by 1859, 2,000 to 2,500 tons of lead concentrate was produced 
(Hall and Whitney, 1862). Carlson (1961) estimated total production at 100,000 tons of lead at 6-10% grade (6,000 to 
10,000 tons lead concentrate). 

Sulfide mineralization at the Crow Branch mine was unique for the district. Early diggings identified 3 mineralized flats 
(horizontal beds), connected by iron-sulfide-rich pitches (inclined veins or small faults) that strike N25W (Percival, 1856; 
Heyl and others 1959). The lowermost flat contains lateral sheets of sphalerite, the middle flat contains sheets of iron 
sulfide, and the uppermost flat contains pyrite disseminated within shale (Percival, 1856). Above the flats are vertical 
Pb-bearing gash-vein deposits in the Galena Formation (Hall and Whitney, 1862). Chamberlin (1882) recognized that 
unlike most pitch-and-flat zinc deposits in the Upper Mississippi Valley, which contain two oppositely dipping 
sequences of mineralized pitches, the Crow Branch mining area contains only a single set of SW-dipping pitches. They 
named this unique mineralization style “parallel pitches.” 

The Crow Branch area is also notable for its deep root system.  Hall and Whitney (1862) reported vertical galena veins 
running through the St. Peter sandstone, and extensive mineralization starting within the lower Platteville Formation, 
and rising through pitches and flats into the Decorah Formation. More recent exploratory drilling by the U.S. Geologi-
cal Survey largely corroborated the early work, finding that lead, zinc, and iron sulfide mineralization extends vertically 
much deeper than is typical in the Upper Mississippi Valley district, extending from the Galena Formation down into 
the Prairie du Chien Group (Heyl and others, 1951).

Montfort area 

The western half of the Montfort mining subdistrict occurs within the map area, and it contains several Pb and Zn 
mines and prospects in the Galena, Decorah, and Platteville formations. Barite, marcasite, and pyrite are common in 
mineralized zones in the subdistrict. Galena occurs in the Galena Formation as typical gash veins in vertical or subverti-
cal fractures (Heyl and others, 1959). Sphalerite mineralization occurs along bedding-parallel flats and nascent pitches 
(Heyl and others, 1959). 

Montfort mine

The Montfort Mine (fig. 1) was an iron sulfide mine active from 1894 to 1906. Iron sulfide occurs as a bedding-parallel 
vein at the top of the Spechts Ferry member of the Decorah Formation (Heyl and others, 1959). Pb and Zn sulfide were 
recovered as byproduct commodities (Heyl and others, 1959). Seven shafts were sunk into the deposit.

United mine

Heyl and others (1959) report a 91-foot-deep shaft was dug at the United Mine (fig. 1) around 1906. No production is 
known from this property, and additional drilling around the shaft yielded little mineralization (Heyl and others, 1959).
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Figure 1. Simplified 1:125,000 scale regional structure-contour map of the base Platteville Formation, covering all of the Stitzer and 
Montfort quadrangles as well as the northern half of the Ellenboro and Rewey quadrangles. Mines and workings are focused in the SE 
portion of the map near the junction of three anticline-syncline pairs. Contours were constructed following the methods outlined in 
Stewart and others (2022a). Data sources include the unpublished Mineral Development Atlas, water well construction reports, and 
map contacts from this map, Carlson (1961), West (1971), and Taylor (1964).
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